Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35744287

RESUMEN

This study aims to quantify the shear surface morphology of jointed rock and its evolution under shearing, cyclic freezing, and thawing using the Gaussian filtering method. Gaussian filtering method enables the construction of the (large-scale) waviness surface and the (small-scale) unevenness surface of a digitized surface (created by laser scanning). Both waviness and unevenness surfaces are then quantified by roughness coefficient ratio (S) and degradation degrees of the waviness surface (Dw) and unevenness surface (Dr). These (microscopic) morphological parameters (S, Dw and Dr) are subsequently used to explain the development of the (macroscopic) shear strength of the jointed rocks on direct shear tests. The results indicate that compared with fresh jointed rocks, the freezing and thawing causes the potential shear surface asperities to be easier to damage and fail under shear load. Such damage is well represented by the significant decrease in Dw and Dr. On the other hand, with the increase of the freeze-thaw cycle (N), Dw increases while Dr reaches the maximum at an early stage of the cycle, where Dr > Dw. This difference reveals the underlying shear mechanism microscopically; that is, in the initial stage, the shear surface morphology is mainly dominated by the unevenness surface Dr, and then it is controlled by the waviness surface Dw during the freeze-thaw cycle.

3.
Sensors (Basel) ; 18(12)2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30513585

RESUMEN

Leakage is undesirable in water distribution networks, as leaky pipes are financially costly both to water utilities and consumers. The ability to detect, locate, and quantify leaks can significantly improve the service delivered. Optical fibre sensors (OFS) have previously demonstrated their capabilities in performing real-time and continuous monitoring of pipe strength leak detection. However, the challenge remains due to the high labour cost and time-consuming process for the installation of optical fibre sensors to existing buried pipelines. The aim of this paper is to evaluate the feasibility of a submersible optical fibre-based pressure sensor that can be deployed without rigid bonding to the pipeline. This paper presents a set of experiments conducted using the proposed sensing strategy for leak detection. The calibrated optical fibre device was used to monitor the internal water pressure in a pipe with simultaneous verification from a pressure gauge. Two different pressure-based leak detection methods were explored. These leak detection methods were based on hydrostatic and pressure transient responses of the optical fibre pressure sensor. Experimental results aided in evaluating the functionality, reliability, and robustness of the submersible optical fibre pressure sensor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...