Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(33): 11782-11787, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37562139

RESUMEN

Tile-based DNA self-assembly is a cost-effective fabrication method for large-scale nanopatterns. Herein, we report a protocol to directly assemble DNA 2D arrays on silicon wafers and then use the DNA nanostructures as molds to fabricate the corresponding nanostructures on the silicon wafers by hydrogen fluoride (HF) etching. Similar HF etching has been used with robust large DNA origami structures as templates. This work demonstrates that DNA nanostructures assembled from small tiles are sufficiently stable for this process. The resulting feature size (∼8.6 nm) approaches the sizes of e-beam lithography. While the reported method is parallel and inexpensive, e-beam lithography is a serial method and is expensive. We expect that this method will be very useful for preparing fine nanopatterns in large areas.


Asunto(s)
Nanoestructuras , Silicio , Silicio/química , Porosidad , Nanoestructuras/química , ADN/química
2.
Adv Mater ; 35(33): e2302345, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37220213

RESUMEN

DNA self-assembly computation is attractive for its potential to perform massively parallel information processing at the molecular level while at the same time maintaining its natural biocompatibility. It has been extensively studied at the individual molecule level, but not as much as ensembles in 3D. Here, the feasibility of implementing logic gates, the basic computation operations, in large ensembles: macroscopic, engineered 3D DNA crystals is demonstrated. The building blocks are the recently developed DNA double crossover-like (DXL) motifs. They can associate with each other via sticky-end cohesion. Common logic gates are realized by encoding the inputs within the sticky ends of the motifs. The outputs are demonstrated through the formation of macroscopic crystals that can be easily observed. This study points to a new direction of construction of complex 3D crystal architectures and DNA-based biosensors with easy readouts.


Asunto(s)
ADN , Lógica , ADN/química , Computadores Moleculares
3.
J Am Chem Soc ; 145(19): 10475-10479, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37134185

RESUMEN

Biology provides plenty of examples on achieving complicated structures out of minimal numbers of building blocks. In contrast, structural complexity of designed molecular systems is achieved by increasing the numbers of component molecules. In this study, the component DNA strand assembles into a highly complex crystal structure via an unusual path of divergence and convergence. This assembly path suggests a route to minimalists for increasing structural complexity. The original purpose of this study is to engineer DNA crystals with high resolution, which is the primary motivation and a key objective for structural DNA nanotechnology. Despite great efforts in the last 40 years, engineered DNA crystals have not yet consistently reached resolution better than 2.5 Å, limiting their potential uses. Our research has shown that small, symmetrical building blocks generally lead to high resolution crystals. Herein, by following this principle, we report an engineered DNA crystal with unprecedented high resolution (2.17 Å) assembled from one single DNA component: an 8-base-long DNA strand. This system has three unique characteristics: (1) It has a very complex architecture, (2) the same DNA strand forms two different structural motifs, both of which are incorporated into the final crystal, and (3) the component DNA molecule is only an 8-base-long DNA strand, which is, arguably, the smallest DNA motif for DNA nanostructures to date. This high resolution opens the possibility of using these DNA crystals to precisely organize guest molecules at the Å level, which could stimulate a range of new investigations.


Asunto(s)
ADN , Nanoestructuras , ADN/química , Nanoestructuras/química , Nanotecnología , Motivos de Nucleótidos , Ingeniería , Conformación de Ácido Nucleico
4.
J Am Chem Soc ; 145(8): 4853-4859, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791277

RESUMEN

Sequence-selective recognition of DNA duplexes is important for a wide range of applications including regulating gene expression, drug development, and genome editing. Many small molecules can bind DNA duplexes with sequence selectivity. It remains as a challenge how to reliably and conveniently obtain the detailed structural information on DNA-molecule interactions because such information is critically needed for understanding the underlying rules of DNA-molecule interactions. If those rules were understood, we could design molecules to recognize DNA duplexes with a sequence preference and intervene in related biological processes, such as disease treatment. Here, we have demonstrated that DNA crystal engineering is a potential solution. A molecule-binding DNA sequence is engineered to self-assemble into highly ordered DNA crystals. An X-ray crystallographic study of molecule-DNA cocrystals reveals the structural details on how the molecule interacts with the DNA duplex. In this approach, the DNA will serve two functions: (1) being part of the molecule to be studied and (2) forming the crystal lattice. It is conceivable that this method will be a general method for studying drug/peptide-DNA interactions. The resulting DNA crystals may also find use as separation matrices, as hosts for catalysts, and as media for material storage.


Asunto(s)
ADN , ADN/química , Cristalografía por Rayos X , Conformación de Ácido Nucleico
5.
Angew Chem Int Ed Engl ; 62(16): e202218443, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36652628

RESUMEN

Small, single-stranded DNA (ssDNA) circles have many applications, such as templating rolling circle amplification (RCA), capturing microRNAs, and scaffolding DNA nanostructures. However, it is challenging to prepare such ssDNA circles, particularly when the DNA size becomes very small (e.g. a 20 nucleotide (nt) long ssDNA circle). Often, such short ssDNA dominantly form concatemers (either linear or circular) due to intermolecular ligation, instead of forming monomeric ssDNA circles by intramolecular ligation. Herein, a simple method to overcome this problem by designing the complementary linker molecules is reported. It is demonstrated that ssDNA, as short as 16 nts, can be enzymatically ligated (by the commonly used T4 DNA ligase) into monomeric ssDNA circles at high concentration (100 µM) with high yield (97 %). This method does not require any special sequence, thus, it is expected to be generally applicable. The experimental protocol is identical to regular DNA ligation, thus, is expected to be user friendly for general chemists and biologists.


Asunto(s)
ADN de Cadena Simple , Nanoestructuras , ADN , Nucleótidos , Nanoestructuras/química , ADN Ligasas/metabolismo , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN Circular
6.
Nanoscale ; 15(2): 470-475, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36515101

RESUMEN

Assembly of complex structures from a small set of tiles is a common theme in biology. For example, many copies of identical proteins make up polyhedron-shaped, viral capsids and tubulin can make long microtubules. This inspired the development of tile-based DNA self-assembly for nanoconstruction, particularly for structures with high symmetries. In the final structure, each type of motif will adopt the same conformation, either rigid or with defined flexibility. For structures that have no symmetry, their assembly remains a challenge from a small set of tiles. To meet this challenge, algorithmic self-assembly has been explored driven by computational science, but it is not clear how to implement this approach to one-dimensional (1D) structures. Here, we have demonstrated that a constant shift of a conformational equilibrium could allow 1D structures to evolve. As shown by atomic force microscopy imaging, one type of DNA tile successfully assembled into DNA spirals and concentric circles, which became less and less curved from the structure's center outward. This work points to a new direction for tile-based DNA assembly.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Conformación de Ácido Nucleico , ADN/química , Microscopía de Fuerza Atómica
7.
Angew Chem Int Ed Engl ; 62(6): e202213451, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520622

RESUMEN

Non-canonical interactions in DNA remain under-explored in DNA nanotechnology. Recently, many structures with non-canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non-canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross-talking between Watson-Crick and non-canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long-range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non-canonical motifs and their topological self-assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs.


Asunto(s)
ADN , Nanotecnología , Conformación de Ácido Nucleico , Cristalografía por Rayos X , ADN/química , Cristalización
8.
Biophys J ; 121(24): 4909-4914, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35923101

RESUMEN

This manuscript studies the impact of extruding hairpins on two-dimensional self-assembly of DNA tiles on solid surface. Hairpins are commonly used as tomographic markers in DNA nanostructures for atomic force microscopy imaging. In this study, we have discovered that hairpins play a more active role. They modulate the adsorption of the DNA tiles onto the solid surface, thus changing the tile assembly kinetics on the solid surface. Based on this discovery, we were able to promote or slow down DNA self-assembly on the surface by changing the hairpin locations on the DNA tiles. This knowledge gained will be helpful for the future design of DNA self-assembly on surface.


Asunto(s)
ADN , Nanoestructuras , Cinética , ADN/química , Nanoestructuras/química , Microscopía de Fuerza Atómica , Tomografía , Conformación de Ácido Nucleico , Nanotecnología/métodos
9.
Chembiochem ; 23(18): e202200306, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35802389

RESUMEN

Tile-based DNA self-assembly is a powerful approach for nano-constructions. In this approach, individual DNA single strands first assemble into well-defined structural tiles, which, then, further associate with each other into final nanostructures. It is a general assumption that the lower-level structures (tiles) determine the higher-level, final structures. In this study, we present concrete experimental data to show that higher-level structures could, at least in the current example, also impact on the formation of lower-level structures. This study prompts questions such as: how general is this phenomenon in programmed DNA self-assembly and can we turn it into a useful tool for fine tuning DNA self-assembly?


Asunto(s)
Nanoestructuras , ADN/química , ADN de Cadena Simple , Nanoestructuras/química , Nanotecnología/métodos , Conformación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos
10.
J Am Chem Soc ; 144(19): 8741-8745, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35507317

RESUMEN

This manuscript introduces geometry as a means to program the tile-based DNA self-assembly in two and three dimensions. This strategy complements the sequence-focused programmable assembly. DNA crystal assembly critically relies on intermotif, sticky-end cohesion, which requires complementarity not only in sequence but also in geometry. For DNA motifs to assemble into crystals, they must be associated with each other in the proper geometry and orientation to ensure that geometric hindrance does not prevent sticky ends from associating. For DNA motifs with exactly the same pair of sticky-end sequences, by adjusting the length (thus, helical twisting phase) of the motif branches, it is possible to program the assembly of these distinct motifs to either mix with one another, to self-sort and consequently separate from one another, or to be alternatingly arranged. We demonstrate the ability to program homogeneous crystals, DNA "alloy" crystals, and definable grain boundaries through self-assembly. We believe that the integration of this strategy and conventional sequence-focused assembly strategy could further expand the programming versatility of DNA self-assembly.


Asunto(s)
ADN , ADN/química , Conformación de Ácido Nucleico , Motivos de Nucleótidos
11.
Adv Mater ; 34(26): e2200441, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35389546

RESUMEN

A major challenge in material design is to couple nanoscale molecular and supramolecular events into desired chemical, physical, and mechanical properties at the macroscopic scale. Here, a novel self-assembled DNA crystal actuator is reported, which has reversible, directional expansion and contraction for over 50 µm in response to versatile stimuli, including temperature, ionic strength, pH, and redox potential. The macroscopic actuation is powered by cooperative dissociation or cohesion of thousands of DNA sticky ends at the designed crystal contacts. The increase in crystal porosity and cavity in the expanded state dramatically enhances the crystal capability to accommodate/encapsulate nanoparticles/proteins, while the contraction enables a "sponge squeezing" motion for releasing nanoparticles. This crystal actuator is envisioned to be useful for a wide range of applications, including powering self-propelled robotics, sensing subtle environmental changes, constructing functional hybrid materials, and working in drug controlled-release systems.


Asunto(s)
ADN , Nanopartículas , ADN/química , Liberación de Fármacos , Movimiento (Física) , Porosidad
12.
J Am Chem Soc ; 142(6): 2750-2754, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31968944

RESUMEN

Construction of thermally and chemically robust metal-organic frameworks (MOFs) is highly desirable for postcombustion CO2 capture from flue gas containing water vapor and other acidic gases. Here we report a strategy based on appending amino groups to the triazolate linkers of MOFs to achieve exceptional chemical stability against aqueous, acidic, and basic conditions. These MOFs exhibit not only CO2/N2 thermodynamic adsorption selectivity as high as 120 but also CO2/H2O kinetic adsorption selectivity up to 70, featuring distinct adsorptive sites at the channel center for CO2 and at the corner for H2O, respectively. The best performing MOF in this series features low regeneration energy, high CO2 capture utility under humid conditions, and decent cycling performance for mimic flue gas.

13.
Chem Sci ; 10(6): 1816-1822, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-31191897

RESUMEN

We report a generalizable approach to construct MOF@polymer functional composites through surface-initiated atom transfer radical polymerization (SI-ATRP). Unlike conventional SI-ATRP that requires covalent pre-anchoring of the initiating group on substrate surfaces, in our approach, a rationally designed random copolymer (RCP) macroinitiator first self-assembles on MOF surfaces through inter-chain hydrogen bond crosslinking. Subsequent polymerization in the presence of a crosslinking monomer covalently threads these polymer chains into a robust network, physically confining the MOF particle inside the polymer shell. We demonstrated the universality of this approach by growing various polymers on five MOFs of different metals (Zr, Zn, Co, Al, and Cr) with complete control over shell thickness, functionality and layer sequence while still retaining the inherent porosity of the MOFs. Moreover, the wettability of UiO-66 can be continuously tuned from superhydrophilic to superhydrophobic simply through judicious monomer(s) selection. We also demonstrated that a 7 nm polystyrene shell can effectively shield UiO-66 particles against 1 M H2SO4 and 1 M NaOH at elevated temperature, enabling their potential application in demanding chemical environments.

14.
Chem Sci ; 9(25): 5672-5678, 2018 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-30062001

RESUMEN

The development of a simple, robust, and generalizable approach for spatially controlled growth of metal-organic frameworks (MOFs) on diverse polymeric substrates is of profound technological significance but remains a major challenge. Here, we reported the use of adhesive bacterial amyloid nanofibers, also known as curli nanofibers (CNFs), major protein components of bacterial biofilms, as universal and chemically/mechanically robust coatings on various polymeric substrates to achieve controlled MOF growth with improved surface coverage up to 100-fold. Notably, owing to the intrinsic adhesive attributes of CNFs, our approach is applicable for MOF growth on both 2D surfaces and 3D objects regardless of their geometric complexity. Applying this technique to membrane fabrication afforded a thin-film composite membrane comprising a 760 ± 80 nm ZIF-8 selective layer grown on a microporous polyvinylidene fluoride (PVDF) support which exhibited a C3H6/C3H8 mixed-gas separation factor up to 10, C3H6 permeance up to 1110 GPU and operational stability up to 7 days. Our simple yet robust approach therefore provides new insights into designing new interfaces for mediating MOF growth and opens new opportunities for constructing new MOF-based membranes and devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA