Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(20): eadn1095, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748790

RESUMEN

Fiber light-emitting diodes (Fi-LEDs), which can be used for wearable lighting and display devices, are one of the key components for fiber/textile electronics. However, there exist a number of impediments to overcome on device fabrication with fiber-like substrates, as well as on device encapsulations. Here, we uniformly grew all-inorganic perovskite quantum wire arrays by filling high-density alumina nanopores on the surface of Al fibers with a dip-coating process. With a two-step evaporation method to coat a surrounding transporting layer and semitransparent electrode, we successfully fabricated full-color Fi-LEDs with emission peaks at 625 nanometers (red), 512 nanometers (green), and 490 nanometers (sky-blue), respectively. Intriguingly, additional polydimethylsiloxane packaging helps instill the mechanical bendability, stretchability, and waterproof feature of Fi-LEDs. The plasticity of Al fiber also allows the one-dimensional architecture Fi-LED to be shaped and constructed for two-dimensional or even three-dimensional architectures, opening up a new vista for advanced lighting with unconventional formfactors.

2.
Sci Robot ; 9(90): eadi8666, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748782

RESUMEN

Garnering inspiration from biological compound eyes, artificial vision systems boasting a vivid range of diverse visual functional traits have come to the fore recently. However, most of these artificial systems rely on transformable electronics, which suffer from the complexity and constrained geometry of global deformation, as well as potential mismatches between optical and detector units. Here, we present a unique pinhole compound eye that combines a three-dimensionally printed honeycomb optical structure with a hemispherical, all-solid-state, high-density perovskite nanowire photodetector array. The lens-free pinhole structure can be designed and fabricated with an arbitrary layout to match the underlying image sensor. Optical simulations and imaging results matched well with each other and substantiated the key characteristics and capabilities of our system, which include an ultrawide field of view, accurate target positioning, and motion tracking function. We further demonstrate the potential of our unique compound eye for advanced robotic vision by successfully completing a moving target tracking mission.

3.
Pathol Res Pract ; 258: 155349, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772115

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. Emerging evidence suggests that inflammation plays a crucial role in the pathogenesis of PD, with the NLRP3 inflammasome implicated as a key mediator. Nfon-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have recently garnered attention for their regulatory roles in various biological processes, including inflammation. This review aims to provide a mechanistic insight into how ncRNAs function as regulators of inflammatory pathways in PD, with a specific focus on the NLRP3 inflammasome. We discuss the dysregulation of miRNAs and lncRNAs in PD pathogenesis and their impact on neuroinflammation through modulation of NLRP3 activation, cytokine production, and microglial activation. Additionally, we explore the crosstalk between ncRNAs, alpha-synuclein pathology, and mitochondrial dysfunction, further elucidating the intricate network underlying PD-associated inflammation. Understanding the mechanistic roles of ncRNAs in regulating inflammatory pathways may offer novel therapeutic targets for the treatment of PD and provide insights into the broader implications of ncRNA-mediated regulation in neuroinflammatory diseases.


Asunto(s)
Enfermedad de Parkinson , ARN no Traducido , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Humanos , ARN no Traducido/genética , ARN no Traducido/metabolismo , Inflamasomas/metabolismo , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Inflamación/genética , Inflamación/patología , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
4.
ACS Nano ; 18(12): 8557-8570, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38482819

RESUMEN

Perovskite light-emitting diodes (LEDs) have emerged as one of the most propitious candidates for next-generation lighting and displays, with the highest external quantum efficiency (EQE) of perovskite LEDs already surpassing the 20% milestone. However, the further development of perovskite LEDs primarily relies on addressing operational instability issues. This Perspective examines some of the key factors that impact the lifetime of perovskite LED devices and some representative reports on recent advancements aimed at improving the lifetime. Our analysis underscores the significance of "nano" strategies in achieving long-term stable perovskite LEDs. Significant efforts must be directed toward proper device encapsulation, perovskite material passivation, interfacial treatment to address environment-induced material instability, bias-induced phase separation, and ion migration issues.

5.
Adv Mater ; 36(24): e2311106, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38388858

RESUMEN

Electrochemical biosensors have emerged as one of the promising tools for tracking human body physiological dynamics via non-invasive perspiration analysis. However, it remains a key challenge to integrate multiplexed sensors in a highly controllable and reproducible manner to achieve long-term reliable biosensing, especially on flexible platforms. Herein, a fully inkjet printed and integrated multiplexed biosensing patch with remarkably high stability and sensitivity is reported for the first time. These desirable characteristics are enabled by the unique interpenetrating interface design and precise control over active materials mass loading, owing to the optimized ink formulations and droplet-assisted printing processes. The sensors deliver sensitivities of 313.28 µA mm-1 cm-2 for glucose and 0.87 µA mm-1 cm-2 for alcohol sensing with minimal drift over 30 h, which are among the best in the literature. The integrated patch can be used for reliable and wireless diet monitoring or medical intervention via epidermal analysis and would inspire the advances of wearable devices for intelligent healthcare applications.


Asunto(s)
Técnicas Biosensibles , Glucosa , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Glucosa/análisis , Humanos , Sudor/química , Sudor/metabolismo , Impresión , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Etanol/análisis
6.
ACS Appl Mater Interfaces ; 16(4): 5028-5035, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38235664

RESUMEN

Artificial vision systems (AVS) have potential applications in visual prosthetics and artificially intelligent robotics, and they require a preprocessor and a processor to mimic human vision. Halide perovskite (HP) is a promising preprocessor and processor due to its excellent photoresponse, ubiquitous charge migration pathways, and innate hysteresis. However, the material instability associated with HP thin films hinders their utilization in physical AVSs. Herein, we have developed ultrahigh-density arrays of robust HP nanowires (NWs) rooted in a porous alumina membrane (PAM) as the active layer for an AVS. The NW devices exhibit gradual photocurrent change, responding to changes in light pulse duration, intensity, and number, and allow contrast enhancement of visual inputs with a device lifetime of over 5 months. The NW-based processor possesses temporally stable conductance states with retention >105 s and jitter <10%. The physical AVS demonstrated 100% accuracy in recognizing different shapes, establishing HP as a reliable material for neuromorphic vision systems.

7.
Nat Commun ; 14(1): 4611, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528109

RESUMEN

Metal halide perovskites have shown great promise as a potential candidate for next-generation solid state lighting and display technologies. However, a generic organic ligand-free and antisolvent-free solution method to fabricate highly efficient full-color perovskite light-emitting diodes has not been realized. Herein, by utilizing porous alumina membranes with ultra-small pore size as templates, we have successfully fabricated crystalline all-inorganic perovskite quantum wire arrays with ultrahigh density and excellent uniformity, using a generic organic ligand-free and anti-solvent-free solution method. The quantum confinement effect, in conjunction with the high light out-coupling efficiency, results in high photoluminescence quantum yield for blue, sky-blue, green and pure-red perovskite quantum wires arrays. Consequently, blue, sky-blue, green and pure-red LED devices with spectrally stable electroluminescence have been successfully fabricated, demonstrating external quantum efficiencies of 12.41%, 16.49%, 26.09% and 9.97%, respectively, after introducing a dual-functional small molecule, which serves as surface passivation and hole transporting layer, and a halide vacancy healing agent.

8.
J Thorac Dis ; 15(4): 1684-1693, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37197509

RESUMEN

Background: Sepsis is one of the main causes of death in critically ill patients. Immunosuppression was involved deeply in the process of sepsis. The status of research on sepsis-related immunosuppression remains unclear. In this study, a bibliometric analysis was conducted to provide a preliminarily analysis of the current research status in sepsis-related immunosuppression. Methods: The Science Citation Index Expanded (SCI-E) database in the Web of Science Core Collection was used as the data source for the literature search, and the time was set from the inception of the database to the last retrieval time for this study (i.e., May 21, 2022). Using the topic search, we searched for "sepsis" and then for "immunosuppression" in the results to obtain the final results. On the search page of the SCI-E database, we selected the document type, topic direction, MeSH topic heading, MeSH qualifier, keywords, author, journal, country, research institution, language, etc., to obtain the distribution results, and manually removed any duplicate records. We analyzed the use of keywords in the literature and the centrality of the authors, countries, and research institutions. Results: A total of 4,132 articles were retrieved from the database over the search period of 1900 to May 21, 2022. The number of articles published increased annually. A trend of rapid growth was also observed in the number of citations. The most common topic words were humans, male, and female. The most used keywords were sepsis, immunosuppression, and male. The most published researcher was Monneret from Lyon, France. The authors of the article mainly specialized in immunology and surgery. Moldawer and Chaudry from the United States (US) had engaged in the most collaborations with other researchers. The journals that publish literature in this field are mainly journals related to critical care medicine, and the core journals included Shock, Critical Care, and Critical Care Medicine. Conclusions: More and more studies are being published on sepsis-related immunosuppression and largely being conducted in developed countries. Chinese researchers need to carry out more collaborative research.

9.
Open Life Sci ; 18(1): 20220551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816800

RESUMEN

This study investigated the effect of combined thymosin α1 and vitamin C (Tα1 + VitC) on the immunological responses of septic rats. Five groups were designed. The septic model was established by the cecal ligation puncture (CLP) method. The sham group did not undergo CLP, the model group was given normal saline solution, the Tα1 group was given Tα1 (200 µg/kg), the VitC group was given VitC (200 mg/kg), and the Tα1 + VitC group was given Tα1 + VitC. Specimens for immunological analyses were collected at 6, 12, 24, and 48 h posttreatment in each group except for the sham group (only at 48 h). CD4 + CD25 + T cells in the peripheral blood and dendritic cell (DC) proportions in the spleen were analyzed by flow cytometry. Tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), transforming growth factor-ß (TGF-ß1), and nuclear factor kappa-B (NF-κB) were measured by ELISA. CD4 + CD25 + T cells and OX62 + DCs levels significantly increased in the model group and decreased in the Tα1 and/or VitC treatment groups. Similarly, the levels of TNF-α, IL-6, TGF-ß1, and NF-κB significantly increased in the model group and decreased in the Tα1, VitC, and Tα1 + VitC groups, indicating that combined Tα1 and VitC therapy may help regulate the immunological state of patients with sepsis, thereby improving prognosis.

10.
Int Urol Nephrol ; 55(2): 437-448, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35986866

RESUMEN

PURPOSE: Sepsis is a systemic life-threatening inflammatory disease, which leads to septic acute kidney injury (AKI). Circular RNAs (circRNAs) are involved in septic AKI. Herein, we aimed to expound the action of circ_0020339 in septic AKI. The dysregulation of plasma circRNAs between patients with septic non-AKI and patients with septic AKI were screened by circRNA chip. METHODS: The dysregulation of circ_0020339, microRNA (miR)-17-5p, and inositol polyphosphate multi kinase (IPMK) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were measured by cell counting kit-8 (CCK-8) and flow cytometry, respectively. The release of serum creatinine (SCr), tissue inhibitor metalloproteinase-2 (TIMP-2), insulin-like growth factor binding protein-7 (IGFBP7), tumor necrosis factor (TNF)α and interleukin (IL)-1ß was evaluated by enzyme-linked immunosorbent assay (ELISA). Bioinformatic analysis, dual-luciferase reporter assay and miRNA pull down assay were used to confirm the interaction between miR-17-5p and circ_0020339 or IPMK 3'untranslated region (UTR). Protein level of IPMK, TNF receptor-associated factor 6 (TRAF6), phosphorylated AKT (p-AKT)/total (t)-AKT, p-nuclear factor kappa-B (NF-κB) kinase (p-IKK)/t-IKK, p-inhibitor of NF-κB (p-IκB)α/t-IκBα, and p-p65/t-p65 were conducted by western blot. RESULTS: Circ_0020339 was upregulated in the plasma of patients with septic AKI as well as LPS-treated HK2 cells and C57BL/6 mice relative to the corresponding counterparts. Functionally, circ_0020339 was positively correlated with markers of renal functional injury and inflammation in patients with septic AKI; si-circ_0020339 facilitated cell proliferation, while restrained cell apoptosis and inflammation in LPS-triggered HK2 cells; meanwhile, si-circ_0020339 restrained survival rate, renal functional injury and inflammation in LPS-triggered C57BL/6 mice. Furthermore, circ_0020339 and IPMK 3'UTR shared the same complementary sites with miR-17-5p. CONCLUSION: si-circ_0020339 attenuated LPS-induced cell damage by targeting miR-17-5p/IPMK axis and inactivation of TRAF6/p-AKT/p-IKK/p-IκBα/p-p65. Altogether, plasma circ_0020339 serves as a novel diagnostic marker of patients with septic AKI.


Asunto(s)
Lesión Renal Aguda , MicroARNs , Ratones , Animales , Ratones Endogámicos C57BL , Inhibidor NF-kappaB alfa , Lipopolisacáridos , Metaloproteinasa 2 de la Matriz , FN-kappa B , Proteínas Proto-Oncogénicas c-akt , ARN Circular/genética , Factor 6 Asociado a Receptor de TNF , Lesión Renal Aguda/genética , Apoptosis/genética , Biomarcadores , MicroARNs/genética
11.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(5): 492-496, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35728850

RESUMEN

OBJECTIVE: To analyze the treatment process of a renal transplant patient infected with coronavirus disease 2019 (COVID-19), and discuss the management strategy for the immunocompromised hosts. METHODS: The diagnosis and treatment of a case of transplant patients with COVID-19 admitted to Horgos designated hospital of Xinjiang Uygur Autonomous Region in October 2021 were reviewed. The medical history and laboratory and imaging examination treatment and outcome of this case were analyzed. RESULTS: The recipient was a middle-aged male with a time from renal transplantation of 3 years. The onset was moderate to low fever, accompanied by cough and fatigue. Chest CT showed multiple ground glass shadows under the pleura of both lungs, mainly in both lower lungs, gradually worsening until "white lung" appeared, with early renal and cardiac insufficiency. In the course of treatment, immunosuppressants were reduced and the dosage of glucocorticoid was increased. In the early stage, due to renal insufficiency and hyperkalemia, dialysis was conducted for 3 times. Oral abidol and Lianhua Qingwen capsule were given as antiviral and anti-infection treatment. Special immunoglobulin and convalescent plasma of COVID-19 were used to boost the immunity of patients. The patient was eventually clinically cured. CONCLUSIONS: The clinical manifestations and diagnosis of COVID-19 for the kidney transplantation recipient are not significantly different from other populations, but immunocompromised hosts are more likely to suffer from organ dysfunction. The adjustment of immunosuppressants and glucocorticoids, respiratory support, selection of antibiotics, organ protection, nutritional support and traditional Chinese medicine intervention in the treatment of renal transplant recipients with severe COVID-19 need further discussion.


Asunto(s)
COVID-19 , Trasplante de Riñón , COVID-19/terapia , Glucocorticoides , Humanos , Inmunización Pasiva , Huésped Inmunocomprometido , Inmunosupresores , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Sueroterapia para COVID-19
12.
Nanoscale Horiz ; 7(7): 759-769, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35638535

RESUMEN

Besides its ubiquitous applications in optoelectronics, halide-perovskites (HPs) have also carved a niche in the domain of resistive switching memories (Re-RAMs). However owing to the material and electrical instability challenges faced by HP thin-films, rarely perovskite Re-RAMs are used to experimentally demonstrate data processing which is a fundamental requirement for neuromorphic applications. Here, for the first time, lead-free, ultrahigh density HP nanowire (NW) array Re-RAM has been utilized to demonstrate image processing via design of convolutional kernels. The devices exhibited superior switching characteristics including a high endurance of 5 × 106 cycles, an ultra-fast erasing and writing speed of 900 ps and 2 ns, respectively, and a retention time >5 × 104 s for the resistances. The work is bolstered by an in-depth mechanistic study and first-principles simulations which provide evidence of electrochemical metallization triggering the switching. Employing the robust multi-level switching behaviour, image processing functions of embossing, outlining and sharpening were successfully implemented.

13.
ACS Nano ; 16(5): 8388-8398, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35522604

RESUMEN

Color tunability of perovskite light-emitting diodes (PeLEDs) by mixed halide compositional engineering is one of the primary intriguing characteristics of PeLEDs. However, mixed halide PeLEDs are often susceptible to color red-shifting caused by halide ion segregation. In this work, strongly quantum-confined perovskite nanowires (QPNWs) made of CsPbBr3 are grown in nanoporous anodic alumina templates using a closed space sublimation process. By tuning the pore size with atomic layer deposition, QPNWs with a diameter of 6.6 to 2.8 nm have been successfully obtained, with continuous tunable photoluminescence emission color from green (512 nm) to pure blue (467 nm). To better understand the photophysics of QPNWs, carrier dynamics and the benefit of alumina passivation are studied and discussed in detail. Eventually, PeLEDs using various diameters of CsPbBr3 QPNWs are successfully fabricated with cyan color (492 nm) PeLEDs, achieving a record high 7.1% external quantum efficiency (EQE) for all CsPbBr3-based cyan color PeLEDs. Sky blue (481 nm) and pure blue (467 nm) PeLEDs have also been successfully demonstrated, respectively. The work here demonstrates a different approach to achieve quantum-confined one-dimensional perovskite structures and color-tunable PeLEDs, particularly blue PeLEDs.

14.
Nano Lett ; 22(7): 3062-3070, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35312323

RESUMEN

Charge collection narrowing (CCN) has been reported to be an efficient strategy to achieve optical filter-free narrowband photodetection (NPD) with metal halide perovskite (MHP) single crystals. However, the necessity of utilizing thick crystals in CCN limits their applications in large scale, flexible, self-driven, and high-performance optoelectronics. Here, for the first time, we fabricate vertically integrated MHP quantum wire/nanowire (QW/NW) array based photodetectors in nanoengineered porous alumina membranes (PAMs) showing self-driven broadband photodetection (BPD) and NPD capability simultaneously. Two cutoff detection edges of the NPDs are located at around 770 and 730 nm, with a full-width at half-maxima (fwhm) of around 40 nm. The optical bandgap difference between the NWs and the QWs, in conjunction with the high carrier recombination rate in QWs, contributes to the intriguing NPD performance. Thanks to the excellent mechanical flexibility of the PAMs, a flexible NPD is demonstrated with respectable performance. Our work here opens a new pathway to design and engineer a nanostructured MHP for novel color selective and full color sensing devices.

15.
Chemosphere ; 290: 133324, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34921857

RESUMEN

The photo-Fenton reaction was widely used in the removal of pollutants in waste water, which makes it exhibit great potential in the field of environmental remediation. Hence, it is crucial to explore a new efficient and stable photo-Fenton catalyst driven by visible light. In this work, a simple two-step calcination method was used to synthesize sheet-like stacked Ultra-thin g-C3N4/FeOCl (CNF) materials. The morphology, composition, photo-Fenton performance, and antibacterial properties were systematically analyzed. Research results exhibited that the synthesized CNF catalysts showed enhanced visible light absorption capacity and excellent photo-Fenton performance. Compared with FeOCl alone, CNF displayed stronger degradation ability for rhodamine B (RhB) and could achieve 97% degradation within 9 min, which was about 10 times that of pure FeOCl. At the same time, the composite catalysts exhibited excellent antibacterial effects under photo-Fenton conditions. The antibacterial rate of CNF composite catalyst under photo-Fenton conditions can reach almost 99%, which was 3 times that of photocatalysis alone and 2 times that of Fenton alone. The heterojunction formed between Ultra-thin g-C3N4 and FeOCl promoted the separation of e- and h+. Simultaneously, the presence of e- promoted the cycle of Fe3+ and Fe2+ in FeOCl, thereby promoting the generation of hydroxyl radicals (OH) from H2O2 and improving the photo-Fenton activity to achieve the effect of degrading pollutants and antibacterial. The photo-Fenton catalysis and degradation mechanism were analyzed in detail. This work provided a theoretical basis for the application of CNF material in the removal of wastewater.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Antibacterianos/farmacología , Catálisis , Peróxido de Hidrógeno , Luz
16.
Ann Transl Med ; 10(24): 1373, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36660703

RESUMEN

Background: The kidney is one of the most vulnerable organs in sepsis patients, which mainly manifests as sepsis-associated acute kidney injury (SA-AKI). The case fatality rate of SA-AKI is high, and thus, predicting the risk of SA-AKI-related death is hugely significant. Anion gap (AG) is an important indicator in critical illness patients. The present study aimed to analyze the predictive value of the AG for the short-term prognosis of SA-AKI patients. Methods: SA-AKI patient data from the Medical Information Mart for Intensive Care (MIMIC-IV) database were collected retrospectively. Hospitalized septic patients who meet the inclusion criteria were included in the final analysis. All laboratory test parameters only included the data generated within the first 24 hours after the patient entered the intensive care unit (ICU) and the extreme value. Univariate and multivariate logistic regression analyses were performed to analyze the risk factors related to the death of SA-AKI patients within 28 days during hospitalization in the ICU. Results: A total of 3,684 SA-AKI patients were included, including 3,305 patients with low AG (<18 mmol/L) and 379 patients with high AG (≥18 mmol/L). Among these patients, 497 cases (13.5%) died during hospitalization, including 376 cases (11.4%) in the low AG group and 121 cases (31.9%) in the high AG group. Multivariate logistic regression analysis showed that elevated AG increased the risk of death in SA-AKI patients within 28 days during hospitalization in the ICU (odds ratio =1.2, 95% confidence interval: 1.2-1.3). Further analysis showed that the risk of death of SA-AKI patients within 28 days during hospitalization in the ICU was increased when AG ≥14 mmol/L. The relationship between AG level and the risk of death of SA-AKI patients during hospitalization was S-shaped. Conclusions: In clinical practice, AG levels can serve as a valuable predictor of the death risk of SA-AKI patients during hospitalization.

17.
Bioengineered ; 12(2): 12107-12122, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34753396

RESUMEN

Colorectal cancer (CRC) is the third most commonly diagnosed malignant tumor worldwide. LINC00857 has been reported as a dysregulated long non-coding RNAs (lncRNAs) involved in the genesis and development of different cancers. In CRC, accumulating evidence indicates that high mobility group box 3 (HMGB3) is over-expressed and contributes to CRC development. However, the mechanism underlying HMGB3 upregulation in CRC remains unclear. The present work aims to investigate the role of LINC00857 and its functional interaction with HMGB3 in regulating CRC progression. Differential expression of LINC00857 between CRC tissues and normal tissues was identified in TCGA (The Cancer Genome Atlas) database. In vitro functional assays were performed to explore the biological functions of LINC00857 in CRC cells. In vivo xenograft model was employed to investigate the role of LINC00857 in CRC tumorigenesis. We found that LINC00857 was significant upregulated in CRC tissues and cell lines. LINC00857 knockdown significantly inhibited the proliferation, migration and invasion of CRC cells, and also induced apoptosis. Moreover, LINC00857 knockdown suppressed CRC tumorigenesis in vivo. We further demonstrated that the effects of LINC00857 in CRC cells were mediated through miR-150-5p/HMGB3 axis. LINC00857 negatively regulates the activity of miR-150-5p, which releases its inhibition on HMGB3 expression. Our data indicate that LINC00857/miR-150-5p/HMGB3 axis plays a fundamental role in regulating the malignant phenotype and tumorigenesis of CRC. Targeting this axis may serve as novel therapeutic strategies for CRC treatment.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Proteína HMGB3/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba/genética , Animales , Apoptosis/genética , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Técnicas de Silenciamiento del Gen , Proteína HMGB3/metabolismo , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , ARN Largo no Codificante/genética
18.
Water Sci Technol ; 84(3): 499-511, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34388115

RESUMEN

Photocathodic protection is an economical and environmental metal anticorrosion method. In this research, we successfully synthesized the g-C3N4/GO (15 wt%)/MoS2 catalytic materials by a facile hydrothermal method. The results show that the as-prepared g-C3N4/GO (15 wt%)/MoS2 composites prominently enhanced photocatalytic activities for the photocathodic protection of 304 stainless steel (SS) compared with the corresponding pristine g-C3N4 and MoS2. Notably, the AC impedance results demonstrated that the Rct value of 304 SS coupled with g-C3N4/GO (15 wt%)/MoS2 decreased to 35.66 Ω•cm2, which is 29 and 37 times lower than that of g-C3N4 and MoS2 alone. In addition, g-C3N4/GO (15 wt%)/MoS2 provided the highest current density (77.19 µA•cm2) for the 304 SS, which is four times that of pristine g-C3N4. All results indicate that as-prepared g-C3N4/GO (15 wt%)/MoS2 photocatalysts have produced a distinct enhancement on photocathodic protection performance. An optimum decorating amount of MoS2 onto g-C3N4 forms heterojunctions of g-C3N4/MoS2, which favor the separation of electrons and holes efficiently. Furthermore, the addition of GO further promotes the separation and transfer of photo-induced carriers.


Asunto(s)
Molibdeno , Acero Inoxidable , Catálisis , Luz
19.
Microbes Infect ; 23(9-10): 104867, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34298177

RESUMEN

Ubiquitin-specific peptidase 13 (USP13) has been reported to participate in tumorigenesis, cell cycle arrest, endoplasmic reticulum-associated degradation, and immune responses. Here, we explored the function of USP13 in pro-inflammatory cytokine production of macrophages and its role in mouse sepsis model. Primary bone-marrow-derived macrophages (BMDMs) isolated from wild type (WT) and USP13MKO mice were treated by lipopolysaccharides (LPS), IL-4, toll-like receptors (TLRs) agonists, and IRAK4 inhibitor to profile the inflammatory responses with different genotypes. Mouse sepsis model (WT and USP13MKO) created by intraperitoneal injection with LPS plus d-galactosamine was used to assess septic shock-induced survival and lung inflammation. Flow cytometry, qRT-PCT, Western blot, and ELISA were performed to detect pro-inflammatory production and macrophage polarization. USP13 was a key regulator of IRAK4 deubiquitination in BMDMs and its myeloid specific deficiency contributed to LPS-induced pro-inflammatory response and septic symptoms. IRAK4 inhibitor co-administration improved in LPS-induced inflammatory responses in both BMDMs and septic mice. USP13 negatively regulates LPS-induced sepsis shock by targeting IRAK4. In summary, targeting USP13-IRAK4 axis might be a potential therapeutic strategy for the treatment of inflammation in sepsis shock.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Lipopolisacáridos , Sepsis , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Modelos Animales de Enfermedad , Degradación Asociada con el Retículo Endoplásmico , Quinasas Asociadas a Receptores de Interleucina-1/genética , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Proteasas Ubiquitina-Específicas/genética
20.
Nano Lett ; 21(12): 5036-5044, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34124910

RESUMEN

With strikingly high speed, data retention ability and storage density, resistive RAMs have emerged as a forerunning nonvolatile memory. Here we developed a Re-RAM with ultra-high density array of monocrystalline perovskite quantum wires (QWs) as the switching matrix with a metallic silver conducting pathway. The devices demonstrated high ON/OFF ratio of ∼107 and ultra-fast switching speed of ∼100 ps which is among the fastest in literature. The devices also possess long retention time of over 2 years and record high endurance of ∼6 × 106 cycles for all perovskite Re-RAMs reported. As a concept proof, we have also successfully demonstrated a flexible Re-RAM crossbar array device with a metal-semiconductor-insulator-metal design for sneaky path mitigation, which can store information with long retention. Aggressive downscaling to ∼14 nm lateral dimension produced an ultra-small cell effectively having 76.5 nm2 area for single bit storage. Furthermore, the devices also exhibited unique optical programmability among the low resistance states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...