Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Transl Med ; 22(1): 489, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778315

RESUMEN

OBJECTIVE: Mild therapeutic hypothermia (MTH) is an important method for perioperative prevention and treatment of myocardial ischemia-reperfusion injury (MIRI). Modifying mitochondrial proteins after protein translation to regulate mitochondrial function is one of the mechanisms for improving myocardial ischemia-reperfusion injury. This study investigated the relationship between shallow hypothermia treatment improving myocardial ischemia-reperfusion injury and the O-GlcNAcylation level of COX10. METHODS: We used in vivo Langendorff model and in vitro hypoxia/reoxygenation (H/R) cell model to investigate the effects of MTH on myocardial ischemia-reperfusion injury. Histological changes, myocardial enzymes, oxidative stress, and mitochondrial structure/function were assessed. Mechanistic studies involved various molecular biology methods such as ELISA, immunoprecipitation (IP), WB, and immunofluorescence. RESULTS: Our research results indicate that MTH upregulates the O-GlcNACylation level of COX10, improves mitochondrial function, and inhibits the expression of ROS to improve myocardial ischemia-reperfusion injury. In vivo, MTH effectively alleviates ischemia-reperfusion induced cardiac dysfunction, myocardial injury, mitochondrial damage, and redox imbalance. In vitro, the OGT inhibitor ALX inhibits the OGT mediated O-GlcNA acylation signaling pathway, downregulates the O-Glc acylation level of COX10, promotes ROS release, and counteracts the protective effect of MTH. On the contrary, the OGA inhibitor ThG showed opposite effects to ALX, further confirming that MTH activated the OGT mediated O-GlcNAcylation signaling pathway to exert cardioprotective effects. CONCLUSIONS: In summary, MTH activates OGT mediated O-glycosylation modified COX10 to regulate mitochondrial function and improve myocardial ischemia-reperfusion injury, which provides important theoretical basis for the clinical application of MTH.


Asunto(s)
Hipotermia Inducida , Daño por Reperfusión Miocárdica , Regulación hacia Arriba , Animales , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Masculino , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias/metabolismo , Glicosilación , Acilación
2.
Adv Healthc Mater ; : e2304196, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712598

RESUMEN

For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.

3.
Apoptosis ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38615305

RESUMEN

The mortality and therapeutic failure in cutaneous melanoma (CM) are mainly caused by wide metastasis and chemotherapy resistance. Meanwhile, immunotherapy is considered a crucial therapy strategy for CM patients. However, the efficiency of currently available methods and biomarkers in predicting the response of immunotherapy and prognosis of CM is limited. Programmed cell death (PCD) plays a significant role in the occurrence, development, and therapy of various malignant tumors. In this research, we integrated fourteen types of PCD, multi-omics data from TCGA-SKCM and other cohorts in GEO, and clinical CM patients to develop our analysis. Based on significant PCD patterns, two PCD-related CM clusters with different prognosis, tumor microenvironment (TME), and response to immunotherapy were identified. Subsequently, seven PCD-related features, especially CD28, CYP1B1, JAK3, LAMP3, SFN, STAT4, and TRAF1, were utilized to establish the prognostic signature, namely cell death index (CDI). CDI accurately predicted the response to immunotherapy in both CM and other cancers. A nomogram with potential superior predictive ability was constructed, and potential drugs targeting CM patients with specific CDI have also been identified. Given all the above, a novel CDI gene signature was indicated to predict the prognosis and exploit precision therapeutic strategies of CM patients, providing unique opportunities for clinical intelligence and new management methods for the therapy of CM.

4.
Neurobiol Dis ; 196: 106505, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642715

RESUMEN

Alzheimer's and Parkinson's diseases are two of the most frequent neurological diseases. The clinical features of AD are memory decline and cognitive dysfunction, while PD mainly manifests as motor dysfunction such as limb tremors, muscle rigidity abnormalities, and slow gait. Abnormalities in cholesterol, sphingolipid, and glycerophospholipid metabolism have been demonstrated to directly exacerbate the progression of AD by stimulating Aß deposition and tau protein tangles. Indirectly, abnormal lipids can increase the burden on brain vasculature, induce insulin resistance, and affect the structure of neuronal cell membranes. Abnormal lipid metabolism leads to PD through inducing accumulation of α-syn, dysfunction of mitochondria and endoplasmic reticulum, and ferroptosis. Great progress has been made in targeting lipid metabolism abnormalities for the treatment of AD and PD in recent years, like metformin, insulin, peroxisome proliferator-activated receptors (PPARs) agonists, and monoclonal antibodies targeting apolipoprotein E (ApoE). This review comprehensively summarizes the involvement of dysregulated lipid metabolism in the pathogenesis of AD and PD, the application of Lipid Monitoring, and emerging lipid regulatory drug targets. A better understanding of the lipidological bases of AD and PD may pave the way for developing effective prevention and treatment methods for neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Metabolismo de los Lípidos , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Animales
5.
Nano Lett ; 24(20): 5929-5936, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38655909

RESUMEN

Multiferroic materials provide robust and efficient routes for the control of magnetism by electric fields, which have been diligently sought after for a long time. Construction of two-dimensional (2D) vdW multiferroics is a more exciting endeavor. To date, the nonvolatile manipulation of magnetism through ferroelectric polarization still remains challenging in a 2D vdW heterostructure multiferroic. Here, we report a van der Waals (vdW) heterostructure multiferroic comprising the atomically thin layered antiferromagnet (AFM) CrI3 and ferroelectric (FE) α-In2Se3. We demonstrate anomalously nonreciprocal and nonvolatile electric-field control of magnetization by ferroelectric polarization. The nonreciprocal electric control originates from an intriguing antisymmetric enhancement of interlayer ferromagnetic coupling in the opposite ferroelectric polarization configurations of α-In2Se3. Our work provides numerous possibilities for creating diverse heterostructure multiferroics at the limit of a few atomic layers for multistage magnetic memories and brain-inspired in-memory computing.

6.
Ageing Res Rev ; 96: 102234, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38367813

RESUMEN

Osteoporosis is a prevalent chronic metabolic bone disease that poses a significant risk of fractures or mortality in elderly individuals. Its pathophysiological basis is often attributed to postmenopausal estrogen deficiency and natural aging, making the progression of primary osteoporosis among elderly people, especially older women, seemingly inevitable. The treatment and prevention of osteoporosis progression have been extensively discussed. Recently, as researchers delve deeper into the molecular biological mechanisms of bone remodeling, they have come to realize the crucial role of posttranscriptional gene control in bone metabolism homeostasis. RNA-binding proteins, as essential actors in posttranscriptional activities, may exert influence on osteoporosis progression by regulating the RNA life cycle. This review compiles recent findings on the involvement of RNA-binding proteins in abnormal bone metabolism in osteoporosis and describes the impact of some key RNA-binding proteins on bone metabolism regulation. Additionally, we explore the potential and rationale for modulating RNA-binding proteins as a means of treating osteoporosis, with an overview of drugs that target these proteins.


Asunto(s)
Osteoporosis , Femenino , Humanos , Anciano , Osteoporosis/tratamiento farmacológico , Envejecimiento , Huesos , Homeostasis
7.
Immun Ageing ; 21(1): 14, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317229

RESUMEN

The gradual aging of the global population has led to a surge in age-related diseases, which seriously threaten human health. Researchers are dedicated to understanding and coping with the complexities of aging, constantly uncovering the substances and mechanism related to aging like chronic low-grade inflammation. The NOD-like receptor protein 3 (NLRP3), a key regulator of the innate immune response, recognizes molecular patterns associated with pathogens and injury, initiating an intrinsic inflammatory immune response. Dysfunctional NLRP3 is linked to the onset of related diseases, particularly in the context of aging. Therefore, a profound comprehension of the regulatory mechanisms of the NLRP3 inflammasome in aging-related diseases holds the potential to enhance treatment strategies for these conditions. In this article, we review the significance of the NLRP3 inflammasome in the initiation and progression of diverse aging-related diseases. Furthermore, we explore preventive and therapeutic strategies for aging and related diseases by manipulating the NLRP3 inflammasome, along with its upstream and downstream mechanisms.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38290465

RESUMEN

Background: Delaying the formation of atherosclerosis and reducing cardiac ischemia-reperfusion injury remain pressing issues. Melatonin (MLT) possesses anti-inflammatory and antioxidant properties, rendering it a promising candidate for clinical application in coronary artery disease (CAD) patients. While numerous in vivo experiments have elucidated the regulatory mechanisms of MLT in animal models and clinical trials have preliminarily demonstrated the excellent therapeutic potential of MLT in CAD, several key questions remain unanswered. In this review, the authors elucidate the mechanisms underlying CAD's occurrence, progression, and prognosis; delineate the pathways through which MLT exerts its effects; and present compelling evidence supporting its efficacy in CAD. In addition, the authors also describe unresolved issues in the treatment of CAD with MLT, thus providing scholars with directions for future research.

9.
Compr Rev Food Sci Food Saf ; 23(1): e13262, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284577

RESUMEN

The growing emphasis on dietary health has facilitated the development of plant-based foods. Plant proteins have excellent functional attributes and health-enhancing effects and are also environmentally conscientious and animal-friendly protein sources on a global scale. The addition of plant proteins (including soy protein, pea protein, zein, nut protein, and gluten protein) to diverse cheese varieties and cheese analogs holds the promise of manufacturing symbiotic products that not only have reduced fat content but also exhibit improved protein diversity and overall quality. In this review, we summarized the utilization and importance of various plant proteins in the production of hybrid cheeses and cheese analogs. Meanwhile, classification and processing methods related to these cheese products were reviewed. Furthermore, the impact of different plant proteins on the microstructure, textural properties, physicochemical attributes, rheological behavior, functional aspects, microbiological aspects, and sensory characteristics of both hybrid cheeses and cheese analogs were discussed and compared. Our study explores the potential for the development of cheeses made from full/semi-plant protein ingredients with greater sustainability and health benefits. Additionally, it further emphasizes the substantial chances for scholars and developers to investigate the optimal processing methods and applications of plant proteins in cheeses, thereby improving the market penetration of plant protein hybrid cheeses and cheese analogs.


Asunto(s)
Queso , Animales , Queso/microbiología , Proteínas de Plantas , Dieta
10.
Exp Hematol Oncol ; 12(1): 100, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037159

RESUMEN

BACKGROUND: Cyclic-dependent kinase (CDK) 4/6 kinases, as the critical drivers of the cell cycle, are involved in the tumor progression of various malignancies. Pharmacologic inhibitors of CDK4/6 have shown significant clinical prospects in treating hormone receptor-positive and human epidermal growth factor receptor-negative (HR + /HER2-) breast cancer (BC) patients. However, acquired resistance to CDK4/6 inhibitors (CDK4/6i), as a common issue, has developed rapidly. It is of great significance that the identification of novel therapeutic targets facilitates overcoming the CDK4/6i resistance. PARP1, an amplified gene for CDK4/6i-resistant patients, was found to be significantly upregulated during the construction of CDK4/6i-resistant strains. Whether PARP1 drives CDK4/6i resistance in breast cancer is worth further study. METHOD: PARP1 and p-YB-1 protein levels in breast cancer cells and tissues were quantified using Western blot (WB) analysis, immunohistochemical staining (IHC) and immunofluorescence (IF) assays. Bioinformatics analyses of Gene Expression Profiling Interactive Analysis (GEPIA), Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets were applied to explore the relationship between YB-1/PARP1 protein levels and CDK4/6i IC50. Cell Counting Kit-8 (CCK-8) and crystal violet staining assays were performed to evaluate cell proliferation rates and drug killing effects. Flow cytometry assays were conducted to assess apoptosis rates and the G1/S ratio in the cell cycle. An EdU proliferation assay was used to detect the DNA replication ratio after treatment with PARP1 and YB-1 inhibitors. A ChIP assay was performed to assess the interaction of the transcription factor YB-1 and associated DNA regions. A double fluorescein reporter gene assay was designed to assess the influence of WT/S102A/S102E YB-1 on the promoter region of PARP1. Subcutaneous implantation models were applied for in vivo tumor growth evaluations. RESULTS: Here, we reported that PARP1 was amplified in breast cancer cells and CDK4/6i-resistant patients, and knockdown or inhibition of PARP1 reversed drug resistance in cell experiments and animal models. In addition, upregulation of transcription factor YB-1 also occurred in CDK4/6i-resistant breast cancer, and YB-1 inhibition can regulate PARP1 expression. p-YB-1 and PARP1 were upregulated when treated with CDK4/6i based on the WB and IF results, and elevated PARP1 and p-YB-1 were almost simultaneously observed during the construction of MCF7AR-resistant strains. Inhibition of YB-1 or PAPR1 can cause decreased DNA replication, G1/S cycle arrest, and increased apoptosis. We initially confirmed that YB-1 can bind to the promoter region of PARP1 through a ChIP assay. Furthermore, we found that YB-1 phosphorylated at S102 was crucial for PARP1 transcription according to the double fluorescein reporter gene assay. The combination therapy of YB-1 inhibitors and CDK4/6i exerted a synergistic antitumor effect in vitro and in vivo. The clinical data suggested that HR + /HER2- patients with low expression of p-YB-1/PARP1 may be sensitive to CDK4/6i in breast cancer. CONCLUSION: These findings indicated that a ''YB-1/PARP1'' loop conferred resistance to CDK4/6 inhibitors. Furthermore, interrupting the loop can enhance tumor killing in the xenograft tumor model, which provides a promising strategy against drug resistance in breast cancer.

11.
Crit Rev Food Sci Nutr ; : 1-32, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153262

RESUMEN

NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.

12.
Front Cell Dev Biol ; 11: 1271145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020922

RESUMEN

Background: Diabetic nephropathy (DN) was considered a severe microvascular complication of diabetes, which was recognized as the second leading cause of end-stage renal diseases. Therefore, identifying several effective biomarkers and models to diagnosis and subtype DN is imminent. Necroptosis, a distinct form of programmed cell death, has been established to play a critical role in various inflammatory diseases. Herein, we described the novel landscape of necroptosis in DN and exploit a powerful necroptosis-mediated model for the diagnosis of DN. Methods: We obtained three datasets (GSE96804, GSE30122, and GSE30528) from the Gene Expression Omnibus (GEO) database and necroptosis-related genes (NRGs) from the GeneCards website. Via differential expression analysis and machine learning, significant NRGs were identified. And different necroptosis-related DN subtypes were divided using consensus cluster analysis. The principal component analysis (PCA) algorithm was utilized to calculate the necroptosis score. Finally, the logistic multivariate analysis were performed to construct the necroptosis-mediated diagnostic model for DN. Results: According to several public transcriptomic datasets in GEO, we obtained eight significant necroptosis-related regulators in the occurrence and progress of DN, including CFLAR, FMR1, GSDMD, IKBKB, MAP3K7, NFKBIA, PTGES3, and SFTPA1 via diversified machine learning methods. Subsequently, employing consensus cluster analysis and PCA algorithm, the DN samples in our training set were stratified into two diverse necroptosis-related subtypes based on our eight regulators' expression levels. These subtypes exhibited varying necroptosis scores. Then, we used various functional enrichment analysis and immune infiltration analysis to explore the biological background, immune landscape and inflammatory status of the above subtypes. Finally, a necroptosis-mediated diagnostic model was exploited based on the two subtypes and validated in several external verification datasets. Moreover, the expression level of our eight regulators were verified in the singe-cell level and glomerulus samples. And we further explored the relationship between the expression of eight regulators and the kidney function of DN. Conclusion: In summary, our necroptosis scoring model and necroptosis-mediated diagnostic model fill in the blank of the relationship between necroptosis and DN in the field of bioinformatics, which may provide novel diagnostic insights and therapy strategies for DN.

13.
Front Immunol ; 14: 1203389, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868953

RESUMEN

2019 Coronavirus Disease (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). A "cytokine storm", i.e., elevated levels of pro-inflammatory cytokines in the bloodstream, has been observed in severe cases of COVID-19. Normally, activation of the nucleotide-binding oligomeric domain-like receptor containing pyrin domain 3 (NLRP3) inflammatory vesicles induces cytokine production as an inflammatory response to viral infection. Recent studies have found an increased severity of necrobiosis infection in diabetic patients, and data from several countries have shown higher morbidity and mortality of necrobiosis in people with chronic metabolic diseases such as diabetes. In addition, COVID-19 may also predispose infected individuals to hyperglycemia. Therefore, in this review, we explore the potential relationship between NLRP3 inflammatory vesicles in diabetes and COVID-19. In contrast, we review the cellular/molecular mechanisms by which SARS-CoV-2 infection activates NLRP3 inflammatory vesicles. Finally, we propose several promising targeted NLRP3 inflammatory vesicle inhibitors with the aim of providing a basis for NLRP3-targeted drugs in diabetes combined with noncoronary pneumonia in the clinical management of patients.


Asunto(s)
COVID-19 , Diabetes Mellitus , Trastornos Necrobióticos , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , SARS-CoV-2/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Citocinas
14.
Medicina (Kaunas) ; 59(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37893490

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has clearly had a great influence on the lifestyles of the population, especially on patients with type 2 diabetes mellitus. During the COVID-19 outbreak, many countries/regions implemented social-isolation measures, leading to an increase in negative behaviors and impairing the capability of diabetic patients to resist COVID-19, ultimately causing severe prognoses. Moreover, as the epidemic progressed, multiple studies emphasized the significance of physical exercise in the management of type 2 diabetic patients infected with COVID-19. In this study, we selected research from 1 December 2019 to 9 August 2023 that focused on COVID-19-infected diabetic patients to investigate the impact of type 2 diabetes on the immune functions, inflammation factor levels, lung injuries, and mental disorders of such patients, as well as to assess the risk of novel coronavirus pneumonia in these patients. Additionally, the effects of high-intensity, moderate-intensity, and low-intensity exercises on novel coronavirus pneumonia infection in type 2 diabetic patients and the mechanisms of the effects of such exercise were considered. We concluded that elderly diabetic patients with COVID-19 should perform low-intensity exercises to facilitate their recoveries. This study offers guidance for a proper understanding of the dangers of diabetes and the use of appropriate measures to reduce the risk of novel coronavirus pneumonia infections in type 2 diabetic patients.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Trastornos Mentales , Humanos , Anciano , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , SARS-CoV-2 , Trastornos Mentales/epidemiología , Ejercicio Físico
15.
Am J Nephrol ; 54(9-10): 434-450, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37742618

RESUMEN

BACKGROUND: Perioperative acute kidney injury (AKI) is common in surgical patients and is associated with high morbidity and mortality. There are currently few options for AKI prevention and treatment. Due to its complex pathophysiology, there is no efficient medication therapy to stop the onset of the injury or repair the damage already done. Certain anesthetics, however, have been demonstrated to affect the risk of perioperative AKI in some studies. The impact of anesthetics on renal function is particularly important as it is closely related to the prognosis of patients. Some anesthetics can induce anti-inflammatory, anti-necrotic, and anti-apoptotic effects. Propofol, sevoflurane, and dexmedetomidine are a few examples of anesthetics that have protective association with AKI in the perioperative period. SUMMARY: In this study, we reviewed the clinical characteristics, risk factors, and pathogenesis of AKI. Subsequently, the protective effects of various anesthetic agents against perioperative AKI and the latest research are introduced. KEY MESSAGE: This work demonstrates that a thorough understanding of the reciprocal effects of anesthetic drugs and AKI is crucial for safe perioperative care and prognosis of patients. However, more complete mechanisms and pathophysiological processes still need to be further studied.


Asunto(s)
Lesión Renal Aguda , Anestesia , Anestésicos , Propofol , Humanos , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/inducido químicamente , Anestesia/efectos adversos , Propofol/efectos adversos , Anestésicos/farmacología , Sevoflurano
16.
Biomed Pharmacother ; 165: 115067, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392655

RESUMEN

Noncoding ribonucleic acids (ncRNAs) are a class of ribonucleic acids (RNAs) that carry cellular information and perform essential functions. This class encompasses various RNAs, such as small nuclear ribonucleic acids (snRNA), small interfering ribonucleic acids (siRNA) and many other kinds of RNA. Of these, circular ribonucleic acids (circRNAs) and long noncoding ribonucleic acids (lncRNAs) are two types of ncRNAs that regulate crucial physiological and pathological processes, including binding, in several organs through interactions with other RNAs or proteins. Recent studies indicate that these RNAs interact with various proteins, including protein 53, nuclear factor-kappa B, vascular endothelial growth factor, and fused in sarcoma/translocated in liposarcoma, to regulate both the histological and electrophysiological aspects of cardiac development as well as cardiovascular pathogenesis, ultimately leading to a variety of genetic heart diseases, coronary heart disease, myocardial infarction, rheumatic heart disease and cardiomyopathies. This paper presents a thorough review of recent studies on circRNA and lncRNAprotein binding within cardiac and vascular cells. It offers insight into the molecular mechanisms involved and emphasizes potential implications for treating cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , ARN Largo no Codificante , Humanos , ARN Circular/genética , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Factor A de Crecimiento Endotelial Vascular , ARN Largo no Codificante/genética , MicroARNs/genética
17.
Carbohydr Polym ; 311: 120718, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028867

RESUMEN

Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.


Asunto(s)
Curcumina , Nanopartículas , Humanos , Curcumina/farmacología , Portadores de Fármacos , Polisacáridos/farmacología , Inflamación/tratamiento farmacológico
18.
Front Immunol ; 14: 1132250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37026012

RESUMEN

On 23rd July 2022, the World Health Organization (WHO) recognized the ongoing monkeypox outbreak as a public medical crisis. Monkeypox virus (MPV), the etiological agent of monkeypox, is a zoonotic, linear, double-stranded DNA virus. In 1970, the Democratic Republic of the Congo reported the first case of MPV infection. Human-to-human transmission can happen through sexual contact, inhaled droplets, or skin-to-skin contact. Once inoculated, the viruses multiply rapidly and spread into the bloodstream to cause viremia, which then affect multiple organs, including the skin, gastrointestinal tract, genitals, lungs, and liver. By September 9, 2022, more than 57,000 cases had been reported in 103 locations, especially in Europe and the United States. Infected patients are characterized by physical symptoms such as red rash, fatigue, backache, muscle aches, headache, and fever. A variety of medical strategies are available for orthopoxviruses, including monkeypox. Monkeypox prevention following the smallpox vaccine has shown up to 85% efficacy, and several antiviral drugs, such as Cidofovir and Brincidofovir, may slow the viral spread. In this article, we review the origin, pathophysiology, global epidemiology, clinical manifestation, and possible treatments of MPV to prevent the propagation of the virus and provide cues to generate specific drugs.


Asunto(s)
Mpox , Humanos , Antígenos Virales , Antivirales , Cidofovir , Mpox/diagnóstico , Mpox/epidemiología , Mpox/terapia , Prevalencia
19.
Cell Death Dis ; 14(2): 105, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774340

RESUMEN

Copper is a vital mineral, and an optimal amount of copper is required to support normal physiologic processes in various systems, including the cardiovascular system. Over the past few decades, copper-induced cell death, named cuproptosis, has become increasingly recognized as an important process mediating the pathogenesis and progression of cardiovascular disease (CVD), including atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure. Therefore, an in-depth understanding of the regulatory mechanisms of cuproptosis in CVD may be useful for improving CVD management. Here, we review the relationship between copper homeostasis and cuproptosis-related pathways in CVD, as well as therapeutic strategies addressing copper-induced cell death in CVD.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , Cobre , Muerte Celular , Homeostasis
20.
Biomed Pharmacother ; 160: 114361, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36753956

RESUMEN

Non-coding RNA (ncRNA) is a special type of RNA transcript that makes up more than 90 % of the human genome. Although ncRNA typically does not encode proteins, it indirectly controls a wide range of biological processes, including cellular metabolism, development, proliferation, transcription, and post-transcriptional modification. NcRNAs include small interfering RNA (siRNA), PIWI-interacting RNA (piRNA), tRNA-derived small RNA (tsRNA), etc. The most researched of these are miRNA, lncRNA, and circRNA, which are crucial regulators in the onset of diabetes and the development of associated consequences. The ncRNAs indicated above are linked to numerous diabetes problems by binding proteins, including diabetic foot (DF), diabetic nephropathy, diabetic cardiomyopathy, and diabetic peripheral neuropathy. According to recent studies, Mir-146a can control the AKAP12 axis to promote the proliferation and migration of diabetic foot ulcer (DFU) cells, while lncRNA GAS5 can activate HIF1A/VEGF pathway by binding to TAF15 to promote DFU wound healing. However, there are still many unanswered questions about the mechanism of action of ncRNAs. In this study, we explored the mechanism and new progress of ncRNA-protein binding in DF, which can provide help and guidance for the application of ncRNA in the early diagnosis and potential targeted intervention of DFU.


Asunto(s)
Diabetes Mellitus , Pie Diabético , MicroARNs , ARN Largo no Codificante , Humanos , Pie Diabético/genética , Pie Diabético/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Unión Proteica , MicroARNs/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...