Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Aging (Albany NY) ; 16(7): 6290-6313, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38575204

RESUMEN

BACKGROUND: Immunogenic cell death (ICD) is a regulated form of cell death that triggers an adaptive immune response. The objective of this study was to investigate the correlation between ICD-related genes (ICDGs) and the prognosis and the immune microenvironment of patients with lung adenocarcinoma (LUAD). METHODS: ICD-associated molecular subtypes were identified through consensus clustering. Subsequently, a prognostic risk model comprising 5 ICDGs was constructed using Lasso-Cox regression in the TCGA training cohort and further tested in the GEO cohort. Enriched pathways among the subtypes were analyzed using GO, KEGG, and GSVA. Furthermore, the immune microenvironment was assessed using ESTIMATE, CIBERSORT, and ssGSEA analyses. RESULTS: Consensus clustering divided LUAD patients into three ICDG subtypes with significant differences in prognosis and the immune microenvironment. A prognostic risk model was constructed based on 5 ICDGs and it was used to classify the patients into two risk groups; the high-risk group had poorer prognosis and an immunosuppressive microenvironment characterized by low immune score, low immune status, high abundance of immunosuppressive cells, and high expression of tumor purity. Cox regression, ROC curve analysis, and a nomogram indicated that the risk model was an independent prognostic factor. The five hub genes were verified by TCGA database, cell sublocalization immunofluorescence analysis, IHC images and qRT-PCR, which were consistent with bioinformatics analysis. CONCLUSIONS: The molecular subtypes and a risk model based on ICDGs proposed in our study are both promising prognostic classifications in LUAD, which may provide novel insights for developing accurate targeted cancer therapies.


Asunto(s)
Adenocarcinoma del Pulmón , Muerte Celular Inmunogénica , Inmunoterapia , Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/mortalidad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/mortalidad , Pronóstico , Muerte Celular Inmunogénica/genética , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Masculino , Transcriptoma , Femenino
2.
Nat Commun ; 15(1): 3086, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600063

RESUMEN

Bioinspired bionic eyes should be self-driving, repairable and conformal to arbitrary geometries. Such eye would enable wide-field detection and efficient visual signal processing without requiring external energy, along with retinal transplantation by replacing dysfunctional photoreceptors with healthy ones for vision restoration. A variety of artificial eyes have been constructed with hemispherical silicon, perovskite and heterostructure photoreceptors, but creating zero-powered retinomorphic system with transplantable conformal features remains elusive. By combining neuromorphic principle with retinal and ionoelastomer engineering, we demonstrate a self-driven hemispherical retinomorphic eye with elastomeric retina made of ionogel heterojunction as photoreceptors. The receptor driven by photothermoelectric effect shows photoperception with broadband light detection (365 to 970 nm), wide field-of-view (180°) and photosynaptic (paired-pulse facilitation index, 153%) behaviors for biosimilar visual learning. The retinal photoreceptors are transplantable and conformal to any complex surface, enabling visual restoration for dynamic optical imaging and motion tracking.


Asunto(s)
Prótesis Visuales , Biónica , Retina , Visión Ocular , Percepción Visual
3.
BMC Cancer ; 24(1): 453, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605291

RESUMEN

BACKGROUND: Evidence from observational studies suggests an association between chronic obstructive pulmonary disease (COPD) and lung cancer. The potential interactions between the immune system and the lungs may play a causative role in COPD and lung cancer and offer therapeutic prospects. However, the causal association and the immune-mediated mechanisms between COPD and lung cancer remain to be determined. METHODS: We employed a two-sample Mendelian randomization (MR) approach to investigate the causal association between COPD and lung cancer. Additionally, we examined whether immune cell signals were causally related to lung cancer, as well as whether COPD was causally associated with immune cell signals. Furthermore, through two-step Mendelian randomization, we investigated the mediating effects of immune cell signals in the causal association between COPD and lung cancer. Leveraging publicly available genetic data, our analysis included 468,475 individuals of European ancestry with COPD, 492,803 individuals of European ancestry with lung cancer, and 731 immune cell signatures of European ancestry. Additionally, we conducted single-cell transcriptome sequencing analysis on COPD, lung cancer, and control samples to validate our findings. FINDINGS: We found a causal association between COPD and lung cancer (odds ratio [OR] = 1.63, 95% confidence interval [CI] = 1.31-2.02, P-value < 0.001). We also observed a causal association between COPD and regulatory T cells (odds ratio [OR] = 1.19, 95% confidence interval [CI] = 1.01-1.40, P-value < 0.05), as well as a causal association between regulatory T cells and lung cancer (odds ratio [OR] = 1.02, 95% confidence interval [CI] = 1.002-1.045, P-value < 0.05). Furthermore, our two-step Mendelian randomization analysis demonstrated that COPD is associated with lung cancer through the mediation of regulatory T cells. These findings were further validated through single-cell sequencing analysis, confirming the mediating role of regulatory T cells in the association between COPD and lung cancer. INTERPRETATION: As far as we are aware, we are the first to combine single-celled immune cell data with two-sample Mendelian randomization. Our analysis indicates a causal association between COPD and lung cancer, with regulatory T cells playing an intermediary role.


Asunto(s)
Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Neoplasias Pulmonares/genética , Análisis de la Aleatorización Mendeliana , Análisis de Expresión Génica de una Sola Célula , Linfocitos T Reguladores , Enfermedad Pulmonar Obstructiva Crónica/genética , Estudio de Asociación del Genoma Completo
4.
Transl Oncol ; 44: 101948, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582059

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a genetically heterogeneous disease with poor clinical outcomes. Identification of biomarkers linked to DNA replication stress may enable improved prognostic risk stratification and guide therapeutic decision making. We performed integrated single-cell RNA sequencing and computational analyses to define the molecular determinants and subtypes underlying ESCC heterogeneity. METHODS: Single-cell RNA sequencing was performed on ESCC samples and analyzed using Seurat. Differential gene expression analysis was used to identify esophageal cell phenotypes. DNA replication stress-related genes were intersected with single-cell differential expression data to identify potential prognostic genes, which were used to generate a DNA replication stress (DRS) score. This score and associated genes were evaluated in survival analysis. Putative prognostic biomarkers were evaluated by Cox regression and consensus clustering. Mendelian randomization analyses assessed the causal role of PRKCB. RESULTS: High DRS score associated with poor survival. Four genes (CDKN2A, NUP155, PPP2R2A, PRKCB) displayed prognostic utility. Three molecular subtypes were identified with discrete survival and immune properties. A 12-gene signature displayed robust prognostic performance. PRKCB was overexpressed in ESCC, while PRKCB knockdown reduced ESCC cell migration. CONCLUSIONS: This integrated single-cell sequencing analysis provides new insights into the molecular heterogeneity and prognostic determinants underlying ESCC. The findings identify potential prognostic biomarkers and a gene expression signature that may enable improved patient risk stratification in ESCC. Experimental validation of the role of PRKCB substantiates the potential clinical utility of our results.

5.
J Cancer ; 15(8): 2412-2423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495498

RESUMEN

Background: Lung cancer and oesophageal cancer are prevalent malignancies with rising incidence and mortality worldwide. While some environmental and behavioural risk factors for these cancers are established, the contribution of genetic factors to their pathogenesis remains incompletely defined. This study aimed to interrogate the intricate genetic relationship between lung cancer and oesophageal cancer and their potential comorbidity. Methods: We utilised linkage disequilibrium score regression (LDSC) to analyse the genetic correlation between oesophageal carcinoma and lung carcinoma. We then employed several approaches, including pleiotropic analysis under the composite null hypothesis (PLACO), multi-marker analysis of genomic annotation (MAGMA), cis-expression quantitative trait loci (eQTL) analysis, and a pan-cancer assessment to identify pleiotropic loci and genes. Finally, we performed bidirectional Mendelian randomisation (MR) to evaluate the causal relationship between these malignancies. Results: LDSC revealed a significant genetic correlation between oesophageal carcinoma and lung carcinoma. Further analysis identified shared gene loci including PGBD1, ZNF323, and WNK1 using PLACO. MAGMA identified enriched pathways and 9 pleiotropic genes including HIST1H1B, HIST1H4L, and HIST1H2BL. eQTL analysis integrating oesophageal, lung, and blood tissues revealed 26 shared genes including TERT, NKAPL, RAD52, BTN3A2, GABBR1, CLPTM1L, and TRIM27. A pan-cancer exploration of the identified genes was undertaken. MR analysis showed no evidence for a bidirectional causal relationship between oesophageal carcinoma and lung carcinoma. Conclusions: This study provides salient insights into the intricate genetic links between lung carcinoma and oesophageal carcinoma. Utilising multiple approaches for genetic correlation, locus and gene analysis, and causal assessment, we identify shared genetic susceptibilities and regulatory mechanisms. These findings reveal new leads and targets to further elucidate the genetic basis of lung and oesophageal carcinoma, aiding development of preventive and therapeutic strategies.

6.
J Cancer ; 15(5): 1442-1461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356718

RESUMEN

Purpose: To gain a deeper understanding of the incidence and survival rates of rare esophageal mixed adenoacanthoma (EAM) and esophageal mixed adeno-squamous carcinoma (EASC) to promote a more comprehensive understanding of these two subtypes. Background: EAM and EASC are rare subtypes of esophageal cancer with limited literature available. Extensive research has been conducted on the clinical and pathological characteristics of gastric and colorectal mixed adenoacanthomas, but there is relatively little literature on esophageal mixed adenoacanthomas. Therefore, this study aims to investigate the incidence and survival rates of these two subtypes in depth. Methods: Patients diagnosed with EAM and EASC between 2000 and 2019 were selected from the SEER database for the study. Joinpoint software was used to calculate the incidence rates of esophageal AM and ASC patients, and differences in cancer overall survival (OS) and cancer-specific survival (CSS) based on Kaplan-Meier curves were compared. Multivariate Cox regression analysis was employed to identify independent prognostic factors for OS and CSS, and a prognostic model was established and validated for accuracy. Results: The study found that the incidence of EAM increased until 2014, followed by a decline, while the incidence of EASC decreased until 2017, followed by an increase. Both of these subtypes were more common in male patients and those over the age of 65. For EAM patients, preoperative chemoradiotherapy was associated with better survival rates, while for EASC patients, preoperative radiotherapy combined with adjuvant chemotherapy improved survival. Finally, we constructed nomograms for predicting the overall survival of EAM and EASC patients by incorporating identified risk factors, which demonstrated good sensitivity and specificity. Conclusion: EAM and EASC are rare subtypes of esophageal cancer, and an in-depth exploration of their incidence and survival rates provides valuable data and insights for understanding these rare esophageal cancer subtypes. This information can assist clinical decision-making for healthcare professionals.

7.
Aging (Albany NY) ; 16(2): 1640-1662, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38277205

RESUMEN

BACKGROUND: Esophageal cancer is one of the most common malignant tumors with high incidence and mortality rates. Despite the continuous development of treatment options, the prognosis for esophageal cancer patients remains poor. Therefore, there is an urgent need for new diagnostic and therapeutic targets in clinical practice to improve the survival of patients with esophageal cancer. METHODS: In this study, we conducted a comprehensive scRNA-seq analysis of the tumor microenvironment in primary esophageal tumors to elucidate cell composition and heterogeneity. Using Seurat, we identified eight clusters, encompassing non-immune cells (fibroblasts, myofibroblasts, endothelial cells, and epithelial cells) and immunocytes (myeloid-derived cells, T cells, B cells, and plasma cells). Compared to normal tissues, tumors exhibited an increased proportion of epithelial cells and alterations in immune cell infiltration. Analysis of epithelial cells revealed a cluster (cluster 0) with a high differentiation score and early distribution, suggesting its importance as a precursor cell. RESULTS: Cluster 0 was characterized by high expression of FABP6, indicating a potential role in fatty acid metabolism and tumor growth. T cell analysis revealed shifts in the balance between Treg and CD8+ effector T cells in tumor tissues. Cellular communication analysis identified increased interactions between FABP6+ tumor cells and T cells, with the involvement of the MIF-related pathway and the CD74-CD44 interaction. This study provides insights into the cellular landscape and immune interactions within esophageal tumors, contributing to a better understanding of tumor heterogeneity and potential therapeutic targets.


Asunto(s)
Células Endoteliales , Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/genética , Células Epiteliales , Linfocitos B , Diferenciación Celular , Microambiente Tumoral , Pronóstico
8.
Small ; : e2306557, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063820

RESUMEN

Ionogels are extremely soft ionic materials that can undergo large deformation while maintaining their structural and functional integrity. Ductile ionogels can absorb energy and resist fracture under external load, making them an ideal candidate for wearable electronics, soft robotics, and protective gear. However, developing high-modulus ionogels with extreme toughness remains challenging. Here, a facile one-step photopolymerization approach to construct an acrylic acid (AA)-2-hydroxyethylacrylate (HEA)-choline chloride (ChCl) eutectogel (AHCE) with ultrahigh modulus and toughness is reported. With rich hydrogen bonding crosslinks and phase segregation, this gel has a 99.1 MPa Young's modulus and a 70.6 MJ m-3 toughness along with 511.4% elongation, which can lift 12 000 times its weight. These features provide extreme damage resistance and electrical healing ability, offering it a protective and strain-sensitive coating to innovate anticutting fabric with motion detection for human healthcare. The work provides an effective strategy to construct robust ionogel materials and smart wearable electronics for intelligent life.

9.
Aging (Albany NY) ; 15(24): 15535-15556, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38159255

RESUMEN

Cuproptosis involves a direct interaction with the tricarboxylic acid (TCA) lipid acylation components. This process intricately intersects with post-transcriptional lipid acylation (LA) and is linked to mitochondrial respiration and LA metabolism. Copper ions form direct bonds with acylated DLAT, promoting DLAT oligomerization, reducing Fe-S cluster proteins, and inducing a protein-triggered toxic stress response that culminates in cell demise. Simultaneously, the importance of immune contexture in cancer progression and treatment has significantly increased. We assessed the expression of cuproptosis-related genes (CRGs) across TCGA and validated our findings using the GEO data. Consensus clustering divided esophageal cancer (ESCA) patients into two clusters based on the expression of 7 CRGs. We evaluated the expression of immune checkpoint inhibitor (ICI) targets and calculated the elevated tumor mutational burden (TMB). Weighted gene co-expression network analysis (WGCNA) identified genes associated with the expression of CRGs and immunity. Cluster 1 exhibited increased immune infiltration, higher expression of ICI targets, higher TMB, and a higher incidence of deficiency in mismatch repair-microsatellite instability-high status. WGCNA analysis identified 14 genes associated with the expression of CRGs and immune scores. ROC analysis revealed specific hub genes with strong predictive capabilities. The expression levels of SLC6A3, MITD1, and PDHA1 varied across different pathological stages; CCS, LIPT2, PDHB, and PDHA1 showed variation in response to radiation therapy; MITD1 and PDHA1 exhibited differences related to the pathological M stages of ESCA. CRGs influence the immune contexture and can potentially transform cold tumors into hot tumors in ESCA patients.


Asunto(s)
Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/genética , Acilación , Análisis por Conglomerados , Cobre , Lípidos , Apoptosis , Proteínas de la Membrana , Proteínas Asociadas a Microtúbulos
10.
Mol Breed ; 43(12): 84, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38009100

RESUMEN

Drought is one of the major abiotic stresses affecting the maize production worldwide. As a cross-pollination crop, maize is sensitive to water stress at flowering stage. Drought at this stage leads to asynchronous development of male and female flower organ and increased interval between anthesis and silking, which finally causes failure of pollination and grain yield loss. In the present study, the expansin gene ZmEXPA5 was cloned and its function in drought tolerance was characterized. An indel variant in promoter of ZmEXPA5 is significantly associated with natural variation in drought-induced anthesis-silking interval. The drought susceptible haplotypes showed lower expression level of ZmEXPA5 than tolerant haplotypes and lost the cis-regulatory activity of ZmDOF29. Increasing ZmEXPA5 expression in transgenic maize decreases anthesis-silking interval and improves grain yield under both drought and well-watered environments. In addition, the expression pattern of ZmEXPA5 was analyzed. These findings provide insights into the genetic basis of drought tolerance and a promising gene for drought improvement in maize breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01432-x.

11.
RSC Adv ; 13(42): 29291-29307, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37809022

RESUMEN

To comprehend impacts of moisture on exploring and producing shale gas, the rules of pseudo-in situ moisture occurrence in deep shales were revealed through low-pressure N2 adsorption and desorption, and CO2 adsorption measurements. The influences of pseudo-in situ moisture on CH4 adsorption/desorption in the shales were explored at 353.15 K and pressures up to 30 MPa by using the volumetric method. Results showed that the pseudo-in situ moisture content of the shales ranges between 0.57% and 0.94%, which positively correlates with clay mineral content but negatively correlates with organic matter and quartz. The clay minerals contribute more to moisture occurrence mainly via adsorption effect. The pores with the diameters of 1.10-4.10 nm of the shales serve as dominant space for accommodating moisture. Moreover, the pseudo-in situ moisture reduces saturated adsorption capacity and isosteric adsorption heat of CH4 on the shales, suggesting the weakened adsorption affinity toward CH4-shale system. Typically, the minor pseudo-in situ moisture could significantly weaken CH4 adsorption capability of the shales with low clay mineral content through blocking pore throats of organic matter-hosted pores. However, the abundant pseudo-in situ moisture only slightly reduces CH4 adsorption capability of the shales with high clay mineral content due to continuous distribution of organic matter-hosted pores. The aforementioned different roles are dominated by the difference in occurrence characteristics of organic matter-hosted pores and clay mineral-hosted pores between the shales with low clay mineral content and the shales with high clay mineral content. Furthermore, the pseudo-in situ moisture strengthens CH4 adsorption/desorption hysteresis on the shales associated with moisture uptake-induced clay mineral swelling, thereby raising difficulty for CH4 desorption from the shales.

12.
Front Chem ; 11: 1246926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577062

RESUMEN

Conjugate materials have a good application effect in muscle movement recovery. This article aims to provide more references for the practical application of conjugated materials in sports recovery. This paper takes the students of the local physical education college as the experimental object, and selects the students who have sports muscle fatigue or injury for the test. In this paper, they are randomly divided into two groups: the experimental group and the control group, with 19 students in each group. The experimental group used the conjugate material in this paper for muscle movement recovery, while the control group used the traditional method for muscle movement recovery. This paper tested the peak torque, total work done, maximum radial displacement, and contraction time of two groups of students after initial exercise and muscle recovery. The experimental results showed that after 80 h of muscle movement recovery, the peak torque values of isometric contraction (264.59) and concentric contraction (160.81) of students in the experimental group were higher than those of students in the control group (233.79) and concentric contraction (130.43), and the difference was statistically significant (p < 0.05); the isometric contraction time (30.02) and concentric contraction time (29.31) of the experimental group were also higher than those of the control group (27.31) and concentric contraction time (24.58), which was statistically significant (p < 0.05). This study shows that conjugated materials have a significant effect on promoting muscle recovery. They not only help to increase the peak torque of muscle isometric contraction and concentric contraction, but also increase the time of muscle contraction and improve muscle mass.

13.
Folia Neuropathol ; 61(2): 153-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37587890

RESUMEN

INTRODUCTION: The aim of the study was to investigate the pathogenesis of diabetic peripheral neuropathy (DPN) and the value of fibrinogen (FIB) in the early diagnosis of DPN. MATERIAL AND METHODS: A total of 121 patients with type 2 diabetes mellitus (T2DM) and DPN hospitalized in the Endocrinology Department of the 923 Hospital of the People's Liberation Army of China were randomly selected between May and October 2020 and divided into a T2DM asymptomatic (no peripheral neuropathy-related symptoms) group (66 cases) and a T2DM symptomatic group (55 cases) according to the presence or absence of clinical neurological symptoms and signs. Forty healthy volunteers were selected as a normal control group. In addition to plasma FIB and nerve electrophysiological tests, all included subjects were electrophysiologically tested for nerve conduction velocity (NCV), terminal motor latency (DML), sensory nerve action potential (SNAP) amplitude, and compound muscle action potential (CMAP) amplitude. RESULTS: Compared with the control group, NCV was slowed down in T2DM patients, DML was prolonged, and the amplitude of CMAP and SNAP were decreased. Compared with asymptomatic T2DM patients, symptomatic patients had slower NCV, longer DML, lower CMAP amplitude of median nerve, ulnar nerve and tibial nerve, and significantly lower SNAP amplitude of median nerve and ulnar nerve. CMAP amplitudes were decreased, and median and ulnar nerve SNAP amplitudes were also significantly decreased ( p < 0.05). The plasma FIB concentration of asymptomatic patients with T2DM was higher than that of the control group, and the plasma FIB concentration of symptomatic patients with T2DM was higher than that of asymptomatic patients with T2DM ( p < 0.01). The NCV and DML of asymptomatic patients with T2DM slowed down and prolonged as the FIB level increased; the NCV of T2DM symptomatic patients also slowed down as FIB increased, and median and ulnar nerve DML increased as FIB increased. There was no correlation between NCV and DML and the plasma FIB level in the control group. SNAP amplitudes of symptomatic and asymptomatic patients with T2DM decreased as plasma FIB increased, while CMAP amplitudes of the tibial nerve and the T2DM symptomatic ulnar nerve decreased as FIB increased in the control group. CONCLUSIONS: FIB may be a contributing factor for diabetic neuropathy and could be used as an indicator in the early screening and diagnosis of peripheral neuropathy in patients with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Humanos , Fibrinógeno , Neuropatías Diabéticas/diagnóstico , Diabetes Mellitus Tipo 2/complicaciones , Estudios de Conducción Nerviosa
14.
Environ Technol ; : 1-16, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37594271

RESUMEN

Introducing oxy-coal burning flue gas into coal reservoirs has the advantages of mitigating emissions of CO2, NOx, and SO2, and producing in-situ coalbed methane (CBM). Given the characteristics of the geologic time scale for fluid sequestration, the long-duration NO exposure was conducted for various ranks of coal matrices to access the potential impacts of NO exposure on CO2 storage. Afterwards, the changes in critical physico-chemical properties and adsorbability of various ranks of coal matrices to CO2 because of long-duration NO exposure were revealed. Finally, the implications to implement oxy-coal burning flue gas sequestration in unmineable coal reservoirs with CBM production were indicated. The results demonstrate that the long-duration interaction with NO reduces the number of micro- and meso-pores of various ranks of coals, especially those with diametres below 4.00 nm. Moreover, the long-duration NO exposure reduces the oxygen-containing functional groups while significantly increasing the amine/amide-N for all the coals. The aforementioned alterations in the surface chemistry property imply that the coal matrix is capable of chemically adsorbing NO, thereby achieving its stable storage in target coal reservoirs. Given the electron donor-acceptor interactions between amine/amide-N and CO2, the NO exposure can elevate the CO2 storage capability of various ranks of coals under typical reservoir temperature and pressure. In summary, introducing oxy-coal burning flue gas into coal reservoirs is capable of stably storing critical gaseous pollutants and simultaneously enhancing the CO2 storage potential of coal reservoirs, thereby updating the existing oxy-coal burning technology and CO2 sequestration in unmineable coal reservoirs with the enhanced CBM recovery technology.

15.
Aging (Albany NY) ; 15(15): 7811-7830, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37561524

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a highly malignant gastrointestinal tumor, has a poor prognosis and high mortality rate. Pyroptosis could regulate tumor cell proliferation, invasion, and metastasis, thereby affecting the prognosis of cancer patients. However, the role of pyroptosis-related genes (PRGs) in ESCC remains unclear. This study selected 33 PRGs, and finally identified 29 PRGs that were differentially expressed between ESCC and normal esophageal tissues. The genetic mutation variation landscape of PRG in ESCC was also summarised. Based on consensus clustering for the 33 PRGs, all ESCC patients could be divided into two subtypes. Functional enrichment analysis revealed that these 33 PRGs were mainly involved in cytokine production, interleukin-1 production, and the NOD-like receptor signalling pathway. We created a prognostic PRG signature based on least absolute shrinkage and selection operator regression and Cox regression analysis with good survival prediction ability in both GEO and TCGA cohorts. Combined with the clinical characteristics, signature-based risk score was found to be an independent factor for predicting the OS of ESCC patients. A nomogram with enhanced precision for forecasting ESCC was established based on various independent prognostic elements. Significant correlation was observed between prognostic PRGs and immune-cell infiltration, tumor mutation burden, microsatellite instability, immune checkpoint, and drug sensitivity. Finally, we validated the expression of four PRGs in ESCC cell lines and tissues samples. In conclusion, the PRGs exerted significant effects on tumor immunity and prognosis of ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Pronóstico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/terapia , Piroptosis/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Inmunoterapia , Microambiente Tumoral
16.
Adv Sci (Weinh) ; 10(30): e2303944, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37635198

RESUMEN

Neuromorphic vision based on photonic synapses has the ability to mimic sensitivity, adaptivity, and sophistication of bio-visual systems. Significant advances in artificial photosynapses are achieved recently. However, conventional photosyanptic devices normally employ opaque metal conductors and vertical device configuration, performing a limited hemispherical field of view. Here, a transparent planar photonic synapse (TPPS) is presented that offers dual-side photosensitive capability for nearly panoramic neuromorphic vision. The TPPS consisting of all two dimensional (2D) carbon-based derivatives exhibits ultra-broadband photodetecting (365-970 nm) and ≈360° omnidirectional viewing angle. With its intrinsic persistent photoconductivity effect, the detector possesses bio-synaptic behaviors such as short/long-term memory, experience learning, light adaptation, and a 171% pair-pulse-facilitation index, enabling the synapse array to achieve image recognition enhancement (92%) and moving object detection.

17.
Biol Psychiatry ; 94(9): 743-759, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290560

RESUMEN

BACKGROUND: Genome-wide association studies have identified dozens of genetic risk loci for Alzheimer's disease (AD), yet the underlying causal variants and biological mechanisms remain elusive, especially for loci with complex linkage disequilibrium and regulation. METHODS: To fully untangle the causal signal at a single locus, we performed a functional genomic study of 11p11.2 (the CELF1/SPI1 locus). Genome-wide association study signals at 11p11.2 were integrated with datasets of histone modification, open chromatin, and transcription factor binding to distill potentially functional variants (fVars). Their allelic regulatory activities were confirmed by allele imbalance, reporter assays, and base editing. Expressional quantitative trait loci and chromatin interaction data were incorporated to assign target genes to fVars. The relevance of these genes to AD was assessed by convergent functional genomics using bulk brain and single-cell transcriptomic, epigenomic, and proteomic datasets of patients with AD and control individuals, followed by cellular assays. RESULTS: We found that 24 potential fVars, rather than a single variant, were responsible for the risk of 11p11.2. These fVars modulated transcription factor binding and regulated multiple genes by long-range chromatin interactions. Besides SPI1, convergent evidence indicated that 6 target genes (MTCH2, ACP2, NDUFS3, PSMC3, C1QTNF4, and MADD) of fVars were likely to be involved in AD development. Disruption of each gene led to cellular amyloid-ß and phosphorylated tau changes, supporting the existence of multiple likely causal genes at 11p11.2. CONCLUSIONS: Multiple variants and genes at 11p11.2 may contribute to AD risk. This finding provides new insights into the mechanistic and therapeutic challenges of AD.

18.
Small ; 19(40): e2300584, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37267941

RESUMEN

Electrical stimulation (ES) is a safe and effective procedure in clinical rehabilitation with few adverse effects. However, studies on ES for atherosclerosis (AS) are scarce because ES does not provide a long-term intervention for chronic disease processes. Battery-free implants and surgically mounted them in the abdominal aorta of high-fat-fed Apolipoprotein E (ApoE-/- ) mice are used, which are electrically stimulated for four weeks using a wireless ES device to observe changes in atherosclerotic plaques. Results showed that there is almost no growth of atherosclerotic plaque at the stimulated site in AopE-/- mice after ES. RNA-sequencing (RNA-seq) analysis of Thp-1 macrophages reveal that the transcriptional activity of autophagy-related genes increase substantially after ES. Additionally, ES reduces lipid accumulation in macrophages by restoring ABCA1- and ABCG1-mediated cholesterol efflux. Mechanistically, it is demonstrated that ES reduced lipid accumulation through Sirtuin 1 (Sirt1)/Autophagy related 5 (Atg5) pathway-mediated autophagy. Furthermore, ES reverse autophagic dysfunction in macrophages of AopE-/- mouse plaques by restoring Sirt1, blunting P62 accumulation, and inhibiting the secretion of interleukin (IL)-6, resulting in the alleviation of atherosclerotic lesion formation. Here, a novel approach is shown in which ES can be used as a promising therapeutic strategy for AS treatment through Sirt1/Atg5 pathway-mediated autophagy.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología , Sirtuina 1/genética , Sirtuina 1/uso terapéutico , Colesterol , Aterosclerosis/terapia , Autofagia
20.
Protein Pept Lett ; 30(6): 486-497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37165590

RESUMEN

INTRODUCTION: Diabetic peripheral neuropathy (DN) is the most common complication of type 2 diabetes mellitus (T2DM). OBJECTIVE: This study aimed to explore the role of fibrinogen (FIB) in T2DM neuropathy and its preliminary mechanism. METHODS: Ten male Sprague-Dawley rats were divided into a normal control group (NC group) and a T2DM neuropathy model group (DN group). The DN group was given a high-energy diet and streptozotocin, while the NC group was given a normal diet and a citric acid buffer. The expression levels of related proteins were analysed. RESULTS: Electrophysiology: Compared with the NC group, the conduction latency of the somatosensory-evoked potential and nerve conduction velocity was prolonged in the DN group, while the motor nerve action potential was decreased. As seen under a light microscope, the peripheral nerve fibres in the DN group were swollen, and the nerve fibres in the posterior funiculus of the spinal cord were loose or missing. Moreover, as seen under an electron microscope, the peripheral nerve demyelination of the DN group was severe, with microvascular blood coagulation, luminal stenosis, and collapse. Compared with the NC group, in the DN group, the expression of FIB was positively correlated with the expression of both ionised calcium-binding adaptor molecule-1 and glial fibrillary acidic protein. Compared with the NC group, in the DN group, the expression of platelet/endothelial cell adhesion molecule-1 and B-cell lymphoma 2 was negatively correlated. CONCLUSION: The increased concentration of FIB may be the cause of neuropathy, and its mechanism may be related to its promotion of inflammatory response, blood coagulation, and vascular stenosis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Ratas , Animales , Masculino , Neuropatías Diabéticas/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Fibrinógeno , Constricción Patológica/complicaciones , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...