Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(46): 17213-17218, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37946556

RESUMEN

A Type I porous liquid based on the mixed-linker zeolitic imidazolate framework, ZIF-8/90-PL, has been prepared by a one-step imine condensation reaction and characterized by X-ray diffraction, FT-IR spectroscopy, TGA and rheology analysis. This facile preparation strategy of a porous liquid has enormous industrial production and application potential, with over one kilogram of ZIF-8/90-PL being successfully prepared. ZIF-8/90-PL can be directly used as a liquid absorbent or be co-processed with alumina hollow fibers to form a composite membrane with improved selectivity in the context of CO2 separation from CH4 or N2. This simple synthesis method is expected to be extended to other metal-organic frameworks.

2.
Int J Genomics ; 2023: 3807812, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261104

RESUMEN

Tomato chlorosis virus (ToCV), transmitted by the whitefly, Bemisia tabaci (Gennadius; Hemiptera: Aleyrodidae) has been continuously emerging on tomato plants and causing a significant economic loss throughout China. In the current study, RNA-Seq analysis was used to explore the gene expression profiles of B. tabaci Mediterranean (MED) that fed on both ToCV-infected and -uninfected tomato plants for 6, 12, 24, and 48 hours, respectively. The results revealed that dynamic changes occurred in the gene expressions of whiteflies at different time intervals after they acquired the virus. A total of 1709, 461, 4548, and 1748 differentially expressed genes (DEGs) were identified after a 6, 12, 24, and 48 hours feeding interval for the viral acquisition, respectively. The least number of expressed genes appeared in whiteflies with the 12 hours feeding treatment, and the largest numbers of those found in those with 24 hours feeding treatment. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that B. tabaci MED responded to ToCV acquisition through altering its nerve system development, fertility, detoxification, glucose metabolism, and immune function before it lost its ability to transmit the virus. The number of DEGs, degree of differential gene expressions, expression level of the same gene, involved biological processes, and metabolic functions in whiteflies post the 12 hours feeding, and viral acquisition were different from those from other three feeding treatments, which could be a significant finding suggesting an effective control of B. tabaci MED should be done less than 12 hours after whiteflies started feeding on ToCV-infected tomatoes. Our results further provided a clarified understanding in how B. tabaci was protected from viral acquisitions through comparison of the differential profile of gene expressions in whiteflies feeding on plants that were infected by semipersistent viruses.

3.
Genes Genomics ; 45(1): 23-37, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371493

RESUMEN

BACKGROUND: Tomato spot wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV) are highly harmful viruses in agricultural production, which can cause serious economic losses to crops and even devastating consequences for vegetable yield in some countries and regions. Although the two viruses belong to different families and have different transmission vectors, they share most hosts. OBJECTIVE: This study aimed to examine the transcriptomic expression of single and mixed inoculations of TSWV and TYLCV, leading to antagonism using high-throughput RNA sequencing. METHODS: We confirmed the single and mixed infections of these viruses in Nicotiana benthamiana (N. benthamiana) by artificial inoculation. And the expression changes of related genes and their biological functions and pathways during the mixed infection of TSWV and TYLCV were analyzed by comparative transcriptome. RESULTS: Basically, similar symptoms were observed in the plants singly infected with TSWV and co-infected with TYLCV; the symptoms of TYLCV in the co-infected plants were not obvious compared with single TYLCV infections. When inoculated with TYLCV, the accumulation of the virus significantly reduced in single and mixed infections with TSWV; the TSWV accumulated slightly less in co-infection with TYLCV, whereas this reduction was much smaller than that of TYLCV. The results suggested that TSWV had an antagonistic effect on the accumulation of TYLCV in N. benthamiana. It mainly focused on the changes in unique differentially expressed genes (DEGs) caused by the co-infection of TSWV and TYLCV. The eight pathways enriched by upregulated DEGs mainly included amino acid biosynthesis, citrate cycle (or tricarboxylic acid cycle, TCA cycle), and so on. However, only pentose phosphate pathway (PPP) and peptidoglycan biosynthesis could be downregulated in the Kyoto Encyclopedia of Genes and Genomes pathway in which peptidoglycan biosynthesis was involved in upregulated and downregulated pathways. CONCLUSIONS: The antagonistic effect of TSWV on TYLCV in N.benthamiana and the change trends and specific pathways of DEGs in this process were found. Our study provided new insights into the host regulation and competition between viruses in response to TSWV and TYLCV mixed infection.


Asunto(s)
Coinfección , Tospovirus , Humanos , Nicotiana/genética , Tospovirus/genética , Peptidoglicano , Perfilación de la Expresión Génica
4.
Int J Genomics ; 2022: 4522132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634482

RESUMEN

Tomato (Solanum lycopersicum) gray leaf spot disease is a predominant foliar disease of tomato in China that is caused mainly by the necrotrophic fungal pathogen Stemphylium lycopersici. Little is known regarding the pathogenic mechanisms of this broad-host-range pathogen. In this study, a comparative transcriptomic analysis was performed and more genetic information on the pathogenicity determinants of S. lycopersici during the infection process in tomato were obtained. Through an RNA sequencing (RNA-seq) analysis, 1,642 and 1,875 genes upregulated during the early infection and necrotrophic phases, respectively, were identified and significantly enriched in 44 and 24 pathways, respectively. The induction of genes associated with pectin degradation, adhesion, and colonization was notable during the early infection phase, whereas during the necrotrophic phase, some structural molecule activity-related genes were prominently induced. Additionally, some genes involved in signal regulation or encoding hemicellulose- and cellulose-degrading enzymes and extracellular proteases were commonly upregulated during pathogenesis. Overall, we present some putative key genes and processes that may be crucial for S. lycopersici pathogenesis. The abilities to adhere and colonize a host surface, effectively damage host cell walls, regulate signal transduction to manage infection, and survive in a hostile plant environment are proposed as important factors for the pathogenesis of S. lycopersici in tomato. The functional characterization of these genes provides an invaluable resource for analyses of this important pathosystem between S. lycopersici and tomato, and it may facilitate the generation of control strategies against this devastating disease.

5.
PLoS One ; 15(3): e0230023, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32134962

RESUMEN

Melon necrotic spot virus (MNSV) can cause significant economic losses due to decreased quality in cucurbit crops. The current study is the first to use reverse transcription loop-mediated isothermal amplification (RT-LAMP) for detection of MNSV. A set of four LAMP primers was designed based on the coat protein gene sequence of MNSV, and a RT-LAMP reaction was successfully performed for 1 h at 62°C. The results of RT-LAMP showed high specificity for MNSV and no cross-reaction with other viruses. Compared to traditional reverse transcription-PCR (RT-PCR), the RT-LAMP assay was 103-fold more sensitive in detecting MNSV. Due to its sensitivity, speed and visual assessment, RT-LAMP is appropriate for detecting MNSV in the laboratory.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Transcripción Reversa , Tombusviridae/genética , Tombusviridae/aislamiento & purificación , Factores de Tiempo
6.
Artículo en Inglés | MEDLINE | ID: mdl-30412850

RESUMEN

A source of premium animal protein, crustaceans are widely distributed and cultivated around the world. Short-term or long-term starvation events occur frequently owing to natural environment changes or manual management strategies in the life cycle of crustaceans. The result induced by starvation is that somatic growth of crustaceans will be retarded, while the immune mechanism is activated in this process. The aim of this study was to investigate whether the immune regulatory pathways are involved in the growth of crustaceans. Twelve muscle tissue transcriptomes of the oriental river prawn Macrobrachium nipponense were sequenced across four fasting stages lasting 0, 7, 14 and 21 d. The results showed that three immune-related pathways were involved in the growth of M. nipponense by regulating actin expression inducing the chemokine signaling pathway, the leukocyte transendothelial migration pathway and the FcR-mediated phagocytosis pathway. Furthermore, we employed RNA interference (RNAi) to further verify the effects that genes involved in the pathways had on regulating growth of M. nipponense. Comparative transcriptional analysis and RNA interference reveal that VASP and WAVE positively regulated the expression of actin; however, WASP negatively regulated the expression of actin. This is the first report that the immune regulatory pathways play key roles in the growth of crustaceans. Our results will not only provide an entirely new understanding of the immune mechanism of crustaceans from a unique angle but also further enrich and develop the theory of growth and developmental biology in crustaceans.


Asunto(s)
Palaemonidae/crecimiento & desarrollo , Palaemonidae/genética , Interferencia de ARN , Transcripción Genética , Animales , Proteínas de Artrópodos/genética , Palaemonidae/inmunología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...