Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2402786, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966898

RESUMEN

Quasi-2D perovskites exhibit impressive optoelectronic properties and hold significant promise for future light-emitting devices. However, the efficiency of perovskite light-emitting diodes (PeLEDs) is seriously limited by defect-induced nonradiative recombination and imbalanced charge injection. Here, the defect states are passivated and charge injection balance is effectively improved by introducing the additive cyclohexanemethylammonium (CHMA) to bromide-based Dion-Jacobson (D-J) structure quasi-2D perovskite emission layer. CHMA participates in the crystallization of perovskite, leading to high quality film composed of compact and well-contacted grains with enhanced hole transportation and less defects. As a result, the corresponding PeLEDs exhibit stable pure blue emission at 466 nm with a maximum external quantum efficiency (EQE) of 9.22%. According to current knowledge, this represents the highest EQE reported for pure-blue PeLEDs based on quasi-2D bromide perovskite thin films. These findings underscore the potential of quasi-2D perovskites for advanced light-emitting devices and pave the way for further advancements in PeLEDs.

2.
Light Sci Appl ; 13(1): 82, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584197

RESUMEN

Broadband electroluminescence based on environment-friendly emitters is promising for healthy lighting yet remains an unprecedented challenge to progress. The copper halide-based emitters are competitive candidates for broadband emission, but their high-performance electroluminescence shows inadequate broad emission bandwidth of less than 90 nm. Here, we demonstrate efficient ultra-broadband electroluminescence from a copper halide (CuI) nanocluster single emitter prepared by a one-step solution synthesis-deposition process, through dedicated design of ligands and subtle selection of solvents. The CuI nanocluster exhibits high rigidity in the excitation state as well as dual-emissive modes of phosphorescence and temperature-activated delayed fluorescence, enabling the uniform cluster-composed film to show excellent stability and high photoluminescent efficiency. In consequence, ultra-broadband light-emitting diodes (LEDs) present nearly identical performance in an inert or air atmosphere without encapsulation and outstanding high-temperature operation performance, reaching an emission full width at half maximum (FWHM) of ~120 nm, a peak external quantum efficiency of 13%, a record maximum luminance of ~50,000 cd m-2, and an operating half-lifetime of 137 h at 100 cd m-2. The results highlight the potential of copper halide nanoclusters for next-generation healthy lighting.

3.
ACS Nano ; 18(15): 10609-10617, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38569090

RESUMEN

Controlling interfacial reactions is critical for zinc oxide (ZnO)-based inverted perovskite light-emitting diodes (PeLEDs), boosting the external quantum efficiency (EQE) of the near-infrared device to above 20%. However, violent interfacial reactions between the bromine-based perovskites and ZnO-based films severely limit the performance of inverted green PeLEDs, whose efficiency and stability lag far behind those of their near-infrared counterparts. Here, a controllable interfacial amidation between the bromine-based perovskites and magnesium-doped ZnO (ZnMgO) film utilizing caprylyl sulfobetaine (SFB) is realized. The SFB molecules strongly interact with formamidinium bromide, decelerating the amidation reaction between formamidinium and carboxylate groups on the ZnMgO film, thus regulating the crystallization of FAPbBr3. Combined with the passivation of benzylamine, a FAPbBr3 bulk film directly deposited on a ZnMgO substrate with single-crystal characteristics is obtained, exhibiting a high photoluminescence quantum yield of above 80%. The resultant PeLEDs demonstrate a peak EQE of exceeding 20% at a high luminance of 120,000 cd m-2 and a half lifetime of 26 min at 11,000 cd m-2, representing the state-of-the-art inverted green electroluminescence. This work resolves the crucial issues of violent interfacial reactions and provides a strategy toward inverted green PeLEDs with outstanding performance.

4.
Sci Bull (Beijing) ; 68(20): 2354-2361, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37730508

RESUMEN

Blue emissive halide perovskite light-emitting diodes (LEDs) are gaining increasing attention. Reducing defects in halide perovskites to improve the performance of the resulting LEDs is a main research direction, but there are limited passivation methods for achieving efficient and spectrally-stable pure-blue LEDs based on mixed-halide perovskites. In this work, double modification layers containing phosphine oxides, i.e., diphenyl[4-(triphenylsilyl)phenyl]phosphine oxide (TSPO1) and 2,7-bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13), are developed to passivate mixed-halide perovskite quantum dot (QD) films. The comprehensive spectroscopic and structural characterization results indicate the presence of strong interactions between TSPO1/SPPO13 and the QDs. Besides, the combination of the bilayer exhibits a synergistic hole-blocking effect, improving the charge balance of the LEDs. LEDs based on the QD/TSPO1/SPPO13 films deliver stable electroluminesence at 469 nm and present a maximum external quantum efficiency (EQE) and luminance of 4.87% and 560 cd m-2, respectively. Benefiting from the uniform QD/TSPO1/SPPO13 film over a large area, LEDs with an area of 64 mm2 show a maximum EQE of 3.91%, which represents the first efficient large-area mixed-halide perovskite LED with stable pure-blue emission. This work provides a method to improve the perovskite QDs-based film quality and optoelectronic properties, and is a step toward the fabrication of highly-efficient large-area blue perovskite LEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...