Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37959511

RESUMEN

To accurately predict the shear-bearing capacity of UHPC beams, it is crucial to quantify the shear contribution of the fiber bridging effect and UHPC compression zone. Nevertheless, it should be noted that the shear contribution of UHPC in the compression zone is not fully considered in most existing calculation methods, and the probability distribution of fibers within the matrix is also not taken into full account, which reduces the calculation accuracy of the shear bearing capacity of UHPC beams. In this paper, a UHPC beam shear test database containing 247 samples was created, and the influencing factors on the shear capacity of UHPC beams, such as the shear span ratio, the web reinforcement ratio, and the volume fraction of steel fiber, were analyzed. It was found that the ratio of cracking load to ultimate load ranges from 0.2 to 0.6, and the failure in the compression zone of UHPC beams can be divided into diagonal tension failure and shear compression failure. Based on the failure mechanism of the compression zone, considering the contribution of fiber micro tensile strength, a formula for calculating the shear-bearing capacity of UHPC beams with and without web reinforcement was proposed. Verified by experimental data, the proposed formula accurately predicts the shear-bearing capacity of UHPC beams. In comparison with other shear capacity formulas in current design codes, the proposed formula in this paper provides a higher prediction accuracy.

2.
Materials (Basel) ; 16(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37959611

RESUMEN

It is necessary to prepare marine UHPC with synthetic fibers instead of steel fibers, owing to the corrosion risk of steel fibers in marine environments. Currently, the performance of UHPC prepared with different types of fibers has not been comparatively investigated. This work prepared UHPC with steel fiber, polyoxymethylene (POM) fiber, polypropylene (PP) fiber, and polyvinyl alcohol (PVA) fiber. The effects of different fibers on the mechanical properties, impact, and abrasion resistance of UHPC were studied and compared. The results showed that increasing POM fiber can increase the mechanical strength, flexural toughness, impact, and abrasion resistance of UHPC. When its content reaches 2%, the adsorbed-in-fracture energy and abrasion strength of UHPC are 2670 J and 105 h/(kg/m2), respectively. At the same fiber content, POM fiber-reinforced UHPC shows better mechanical strength, toughness, and impact- and abrasion-resistance than the polypropylene (PP)- and polyvinyl alcohol (PVA)-fiber-reinforced UHPCs. Microstructure investigation found that PP fiber has the weakest binding with UHPC paste, which would directly pull out of the matrix under external tensile loading. This weak connection limits the strengthening and toughening effect on the UHPC. PVA fiber has an excellent interfacial connection with the UHPC paste. However, the low tensile strength of PVA fiber limits the strength and toughness of UHPC. POM fiber has a high tensile strength and can absorb tensile loading through debonding, fracture, and tearing. The fracture interface of POM fiber is large, indicating its significant role in strengthening and toughening the UHPC.

3.
Materials (Basel) ; 15(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36233968

RESUMEN

In this paper, the microstructure and resistance to chloride ion penetration of ultra-high-performance concrete (UHPC) prepared from lightweight aggregate (LWA) were studied through simulation and experiment. The effects of LWA with different particle sizes on the chloride ion transport properties of lightweight ultra-high-performance concrete (L-UHPC) were discussed through simulation test results. The random delivery model of LWA in L-UHPC was established by MATLAB, and the model was introduced into COMSOL. Through the comparative analysis of experimental data and simulation results, the repeatability of the proposed model and the simulation accuracy were verified. The results show that when the LWA particle size changes from 0.15-4.75 mm to 0.15-1.18 mm, the width of interfacial transition zone (ITZ) and the overall porosity of L-UHPC decrease. This is because the large particle size LWA has more open pores with larger pore diameters and related interconnections, which are potential channels for chloride ion transport. Therefore, the chloride ion transport properties in L-UHPC are inhibited, which is manifested by the "tortuosity effect" of the LWA.

4.
Materials (Basel) ; 16(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36614415

RESUMEN

The durability of C3S-C3A paste with varied C3A content (0%, 5%, 10%, and 20%) against sulfate attack at various attack ages (3 d, 7 d, 28 d, and 180 d) was investigated in this study through the examinations of corrosion product composition, Ca/Si and Al/Si of calcium-(aluminum)-silicate-hydrate (C-(A)-S-H) gel, formation and evolution of microstructure, migration and transformation of Al containing phase products, and pore structure. The results indicated that sulfate attack can promote the hydration reaction in C3S-C3A paste, thus accelerating the production of C-(A)-S-H gel in the paste. With the increase of C3A content, the acceleration effect becomes more significant. In addition, sulfate attack led to the dealumination and decalcification of C-(A)-S-H gel, resulting in the reduction of the gelling power of C-(A)-S-H gel. The degree of dealumination and decalcification of C-(A)-S-H gel increases with the increase of C3A content. At the same time, free Al and Ca promote the formation of expansive products such as ettringite and gypsum. Finally, under the action of sulfate, the pore characterization of C3S-C3A paste deteriorated, showing a decrease in specific surface area, cumulative pore volume and average pore diameter.

5.
RSC Adv ; 11(28): 17369-17376, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35479700

RESUMEN

In this study, nano calcium silicate hydrate was used as an early strength agent to promote the compressive strength of concrete at 1 day. The strength development and the microstructure of standard concrete (SC), autoclave-free ultra-early strength concrete (ESC) and autoclaved concrete (AC) were comparatively studied. The development of hydration products, morphology and pore-structure with ages were investigated via XRD, TG, microhardness, SEM and NMR tests to reveal the mechanism of early strength of ESC. The results showed that the compressive strength of ESC at day 1 achieved 60% of the designed strength, as strong as 45.6 MPa, and only 3% less than that of SC after 90 days. While the compressive strength of AC was significant increased over 90% of ultimate at 1 day, then slightly raised after that. The hydration products did not changed between ESC and SC, but the content of C-S-H gel, Ca(OH)2 and non-evaporated water of ESC was higher in the same specific age. New hydration products such as hydrogarnet and tobermorite were found in AC under autoclave conditions. The microhardness of the paste and ITZ of ESC were also higher than those of SC. The porosity of ESC at 1 day was larger than that of SC, which was contributed by gel pores (1-10 nm). However, AC with higher ratio of large pores than ESC and SC exhibited the largest porosity. The results proved that nano calcium silicate hydrate as an early strength agent significantly increased the early strength of concrete under autoclave-free conditions. Nano calcium silicate hydrate particles supplied additional nucleus in pores and ITZ, accelerated the formation of C-S-H gel, hardened hydration products, and improved the porosity structure. However, with autoclave curing, the hydration products in AC formed with larger size and higher crystallization, which benefited for early strength. However, the large porosity with large size pores might cause damage.

6.
Virology ; 429(2): 148-54, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22575054

RESUMEN

Rice stripe virus (RSV) belongs to the genus Tenuivirus and its genome consists of four single-stranded RNAs encoding seven proteins. Here, we have analyzed the processing and membrane association of Pc2 encoded by vcRNA2 in insect cells. The enhanced green fluorescent protein (eGFP) was fused to the Pc2 and used for the detection of Pc2 fusion proteins. The results showed that Pc2 was cleaved to produce two proteins named Pc2-N and Pc2-C. When expressed alone, either Pc2-N or Pc2-C could transport to the Endoplasmic reticulum (ER) membranes independently. Further mutagenesis studies revealed that Pc2 contained three ER-targeting domains. The results led us to propose a model for the topology of the Pc2 in which an internal signal peptide immediately followed a cleavage site, and two transmembrane regions are contained.


Asunto(s)
Tenuivirus/fisiología , Proteínas Virales/metabolismo , Animales , Línea Celular , Retículo Endoplásmico/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Insectos , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Coloración y Etiquetado , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...