Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Mar Pollut Bull ; 202: 116337, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615519

RESUMEN

The concentrations of dissolved arsenate in natural water has an important impact on human health. The distributions, seasonal variation and major influencing factors of total dissolved inorganic arsenic (TDIAs) were studied in the Yellow River. The concentrations of TDIAs in the middle and lower reaches of the Yellow River ranged from 4.3 to 42.4 nmol/L, which met the standards for drinking water of WHO. The seasonal variation of TDIAs concentration in the middle and lower reaches of the Yellow River was highest in summer, followed by autumn and winter, and lowest in spring. The influencing factors of TDIAs concentration in the middle and lower reaches of the Yellow River mainly include the hydrological conditions, topographical variation, the adsorption and desorption of suspended particulate matter (SPM) and the intervention of human activities. The absorption of TDIAs by phytoplankton in the Xiaolangdi Reservoir (XLD) is an important factor affecting its distributions and seasonal variation. The annual flux of TDIAs transported from the Yellow River into the Bohai Sea ranged from 1.1 × 105 to 4.5 × 105 mol from 2016 to 2018, which is lower than the flux in 1985 and 2009. The carcinogenic risks (CR) of TDIAs for children and adults were all within acceptable levels (<10-6).


Asunto(s)
Arsénico , Monitoreo del Ambiente , Ríos , Estaciones del Año , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Ríos/química , Arsénico/análisis , China , Humanos , Fitoplancton
2.
Spine J ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38556218

RESUMEN

BACKGROUND CONTEXT: The most frequent type of spinal cord injury is cervical spondylotic myelopathy (CSM). Conventional structural magnetic resonance imaging (MRI) is the gold diagnosis standard for CSM. Diffusion tensor imaging (DTI) could reflect microstructural changes in the spinal cord by tracing water molecular diffusion in early stages of CSM. However, due to the complex local anatomical structure and small field of view of the spinal cord, the imaging effect of traditional DTI imaging on the spinal cord is limited. MUSE (MUltiplexed Sensitivity-Encoding) -DTI is a novel diffusion-weighted imaging (DWI) sequence that achieves higher signal intensity through multiple excitation acquisition. MUSE sequence may improve the quality of spinal cord DTI imaging. STUDY DESIGN: Prospective study. PURPOSE: This study aimed to investigate the clinical diagnosis value of a novel protocol of MUSE-DTI in patients with cervical spondylotic myelopathy (CSM). PATIENT SAMPLE: From August 2021 to March 2022, a total of 60 subjects (22-71 years) were enrolled, including 51 CSM patients (22 males, 29 females) and 9 healthy subjects (4 males and 5 females). Each subject underwent a MUSE-DTI examination and a clinical Japanese Orthopedic Association (JOA) scale. OUTCOME MEASURES: We measured values of FA (Fractional Anisotropy), MD (Mean Diffusivity), AD (Axial Diffusivity), and RD (Radial Diffusivity), and collected the clinical JOA scores of each subject before the MR examination. METHODS: A 3.0T MR scanner (Signa Architect, GE Healthcare) performed the MUSE-DTI sequence on each subject. The cervical canal stenosis of subjects was classified from grade 0 to grade Ⅲ according to the method of an MRI grading system. FA, MD, AD, and RD maps were generated by postprocessing MUSE-DTI data on the GE workstation. Regions of interest (ROIs) were manually drawn at the C2 vertebral body level and C2/3-C6/7 intervertebral disc levels by covering the whole spinal cord. The clinical severity of myelopathy of subjects was assessed by the clinical Japanese Orthopedic Association scale (JOA). RESULTS: MUSE-DTI can acquire a high-resolution diffusion image compared to traditional DTI. The FAMCL values showed a decreasing trend from grade 0 to grade Ⅲ, while the MDMCL, ADMCL, and RDMCL values showed an overall increasing trend. Significant differences in MDMCL, ADMCL, and RDMCL values were found between adjacent groups among grades Ⅰ-Ⅲ (p<.05). The ADC2 values in CSM patients (grade I-Ⅲ) were significantly lower than in healthy individuals (grade 0) (p=.019). The clinical JOA score has a significant correlation with FAMCL (p=.035), MDMCL (p<.001), ADMCL (p<.001), and RDMCL (p<.001) values. CONCLUSIONS: MUSE-DTI displayed a better image quality compared to traditional DTI. MUSE-DTI parameters displayed a grade-dependent trend. All the MUSE-DTI parameters at MCL were correlated with the clinical JOA scores. The ADC2 values can reflect the secondary damage of distal spinal cord. Therefore, MUSE-DTI could be a reliable biomarker for clinical auxiliary diagnosis of spinal cord injury severity in cervical spondylotic myelopathy.

3.
Front Neurosci ; 18: 1334508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379757

RESUMEN

Objectives: The diverse nature of stroke necessitates individualized assessment, presenting challenges to case-control neuroimaging studies. The normative model, measuring deviations from a normal distribution, provides a solution. We aim to evaluate stroke-induced white matter microstructural abnormalities at group and individual levels and identify potential prognostic biomarkers. Methods: Forty-six basal ganglia stroke patients and 46 healthy controls were recruited. Diffusion-weighted imaging and clinical assessment were performed within 7 days after stroke. We used automated fiber quantification to characterize intergroup alterations of segmental diffusion properties along 20 fiber tracts. Then each patient was compared to normative reference (46 healthy participants) by Mahalanobis distance tractometry for 7 significant fiber tracts. Mahalanobis distance-based deviation loads (MaDDLs) and fused MaDDLmulti were extracted to quantify individual deviations. We also conducted correlation and logistic regression analyses to explore relationships between MaDDL metrics and functional outcomes. Results: Disrupted microstructural integrity was observed across the left corticospinal tract, bilateral inferior fronto-occipital fasciculus, left inferior longitudinal fasciculus, bilateral thalamic radiation, and right uncinate fasciculus. The correlation coefficients between MaDDL metrics and initial functional impairment ranged from 0.364 to 0.618 (p < 0.05), with the highest being MaDDLmulti. Furthermore, MaDDLmulti demonstrated a significant enhancement in predictive efficacy compared to MaDDL (integrated discrimination improvement [IDI] = 9.62%, p = 0.005) and FA (IDI = 34.04%, p < 0.001) of the left corticospinal tract. Conclusion: MaDDLmulti allows for assessing behavioral disorders and predicting prognosis, offering significant implications for personalized clinical decision-making and stroke recovery. Importantly, our method demonstrates prospects for widespread application in heterogeneous neurological diseases.

4.
Oncol Lett ; 27(4): 150, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385111

RESUMEN

[This retracts the article DOI: 10.3892/ol.2021.12662.].

5.
Chemistry ; 30(18): e202303919, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38263478

RESUMEN

Encouraged by the successful fabrication of C60-GNR (GNR=graphene nanoribbon) single-molecule transistors in experiments, four Fe-containing derived double-layered devices of Fe@C60-GNR are designed by employing different electrode linkages and their transport properties are investigated by using density functional theory (DFT) and nonequilibrium Green's function (NEGF) methods. Regardless of electrode connection, all these devices give rise to a smaller negative differential resistance (NDR) peak at V=0.2 and a higher peak at 1.2 V, suggesting their stable maneuverability as molecular devices and good candidates for developing on(off)-off(on)-on(off) current switches. The macroscopic NDR performance depends on the delocalization character and the crossing mechanism of the frontier orbitals. The peak-to-valley current ratios (Rmax) range from 454 to 2737, determined by the electrode linkage. Such a large Rmax-value is necessary for developing dynamic random-access memory (DRAM) cells. Encapsulating the Fe atom inside C60 not only improves the conductivity but also introduces the spin-polarized transport property. The spin-filtering efficiency (SFE) of almost all devices oscillates up and down in response to the bias voltage, indicating the possibility of designing on(off)-off(on)-on(off) spin switches and up-down spin switches. All these fascinating properties provide an important clue for designing similar molecular devices with multiple functions by trapping magnetic transition metal atoms inside fullerenes.

6.
Dalton Trans ; 53(6): 2534-2540, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38234156

RESUMEN

Designing photocatalysts with efficient charge separation and electron transport capabilities to achieve efficient visible-driven hydrogen production remains a challenge. Herein, 2D-2D conductive metal-organic framework/g-C3N4 heterojunctions were successfully prepared by an in situ assembly. Compared to pristine g-C3N4, the ratio-optimized Ni-CAT-1/g-C3N4 exhibits approximately 3.6 times higher visible-light H2 production activity, reaching 14 mmol g-1. Through investigations using time-resolved photoluminescence, surface photovoltage, and wavelength-dependent photocurrent action spectroscopies, it is determined that the improved photocatalytic performance is attributed to enhanced charge transfer and separation, specifically the efficient transfer of excited high-energy-level electrons from g-C3N4 to Ni-CAT in the heterojunctions. Furthermore, the high electrical conductivity of Ni-CAT enables rapid electron transport, contributing to the overall enhanced performance. This work provides a feasible strategy to construct efficient dimension-matched g-C3N4-based heterojunction photocatalysts with high-efficiency charge separation for solar-driven H2 production.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38038242

RESUMEN

Overcoming the sluggish reaction kinetics of the oxygen evolution reaction (OER) is a determining factor for the practical application of photocatalysts for overall water splitting. Two-dimensional covalent organic frameworks (2D-COFs) offer an ideal platform for catalyst design in the field of overall water splitting for their exceptional chemical tunability and high efficiency of light capture. In this work, four ß-ketoamine 2D-COFs, consisting of 1,3,5-triformylphloroglucinol (Tp) groups and different linkers with pyridine segments, were constructed and optimized. By means of first-principles calculations, the band structures, free energy changes of photocatalytic hydrogen evolution reaction (HER) and OER, and charge density distributions were calculated and investigated systemically to discuss the visible-light response, overall water splitting activities on active sites, and the characteristic of charge transfer and separation. The protonated pyridine N derived from the double-H2O closed-ring H-bond adsorption model could efficiently induce N-C sites' synergistic effect between pyridine N and its ortho-position C to minimize the OER energy barrier and to enhance the charge transfer and separation. A N-C site synergistic mechanism has been proposed to provide a comprehensive explanation for the experimental results and a new strategy to design novel 2D-COF photocatalysts for overall water splitting.

8.
Nanomaterials (Basel) ; 13(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37570586

RESUMEN

A series of four-terminal V7(Bz)8-WGNR devices were established with wrinkled graphene nanoribbon (WGNR) and vanadium-benzene nanowire (V7(Bz)8). The spin-polarized V7(Bz)8 as the gate channel was placed crossing the plane, the concave (endo-positioned) and the convex (endo-positioned) surface of WGNR with different curvatures via Van der Waals interaction. The density functional theory (DFT) and nonequilibrium Green's function (NEGF) methods were adopted to calculate the transport properties of these devices at various bias voltages (VS) and gate voltages (VG), such as the conductance, spin-polarized currents, transmission spectra (TS), local density of states (LDOS), and scattering states. The results indicate that the position of V7(Bz)8 and the bending curvature of WGNR play important roles in tuning the transport properties of these four-terminal devices. A spin-polarized transport property is induced for these four-terminal devices by the spin-polarized nature of V7(Bz)8. Particularly, the down-spin channel disturbs strongly on the source-to-drain conductance of WGNR when V7(Bz)8 is endo-positioned crossing the WGNR. Our findings on the novel property of four-terminal V7(Bz)8-WGNR devices provide useful guidelines for achieving flexible graphene-based electronic nanodevices by attaching other similar multidecker metal-arene nanowires.

9.
Neonatology ; 120(4): 441-449, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37231912

RESUMEN

INTRODUCTION: Heterogeneous MRI manifestations restrict the efficiency and consistency of neuroradiologists in diagnosing hypoxic-ischemic encephalopathy (HIE) due to complex injury patterns. This study aimed to develop and validate an intelligent HIE identification model (termed as DLCRN, deep learning clinical-radiomics nomogram) based on conventional structural MRI and clinical characteristics. METHODS: In this retrospective case-control study, full-term neonates with HIE and healthy controls were collected in two different medical centers from January 2015 to December 2020. Multivariable logistic regression analysis was implemented to establish the DLCRN model based on conventional MRI sequences and clinical characteristics. Discrimination, calibration, and clinical applicability were used to evaluate the model in the training and validation cohorts. Grad-class activation map algorithm was implemented to visualize the DLCRN. RESULTS: 186 HIE patients and 219 healthy controls were assigned to the training, internal validation, and independent validation cohorts. Birthweight was incorporated with deep radiomics signatures to create the final DLCRN model. The DLCRN model achieved better discriminatory power than simple radiomics models, with an area under the curve (AUC) of 0.868, 0.813, and 0.798 in the training, internal validation, and independent validation cohorts, respectively. The DLCRN model was well calibrated and has clinical potential. Visualization of the DLCRN highlighted the lesion areas that conformed to radiological identification. CONCLUSION: Visualized DLCRN may be a useful tool in the objective and quantitative identification of HIE. Scientific application of the optimized DLCRN model may save time for screening early mild HIE, improve the consistency of HIE diagnosis, and guide timely clinical management.


Asunto(s)
Aprendizaje Profundo , Hipoxia-Isquemia Encefálica , Recién Nacido , Humanos , Estudios Retrospectivos , Estudios de Casos y Controles , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Hipoxia-Isquemia Encefálica/patología , Imagen por Resonancia Magnética
10.
Hum Brain Mapp ; 44(9): 3730-3743, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37042391

RESUMEN

Anxiety is characterized by altered brain networks. Directional information flows among dynamic brain networks concerning neuropathogenesis of anxiety have not yet been investigated. The role of directional influences between networks in gene-environment effects on anxiety remains to be further elucidated. In a large community sample, this resting-state functional MRI study estimated dynamic effective connectivity among large-scale brain networks based on a sliding-window approach and Granger causality analysis, providing dynamic and directional information for signal transmission in networks. We first explored altered effective connectivity among networks related to anxiety in distinct connectivity states. Due to the potential gene-environment effects on brain and anxiety, we further performed mediation and moderated mediation analyses to investigate the role of altered effective connectivity networks in relationships between polygenic risk scores, childhood trauma, and anxiety. State and trait anxiety scores showed correlations with altered effective connectivity among extensive networks in distinct connectivity states (p < .05, uncorrected). Only in a more frequent and strongly connected state, there were significant correlations between altered effective connectivity networks and trait anxiety (PFDR <0.05). Furthermore, mediation and moderated mediation analyses showed that the effective connectivity networks played a mediating role in the effects of childhood trauma and polygenic risk on trait anxiety. State-dependent effective connectivity changes among brain networks were significantly related to trait anxiety, and mediated gene-environment effects on trait anxiety. Our work sheds novel light on the neurobiological mechanisms underlying anxiety, and provides new insights into early objective diagnosis and intervention evaluation.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Humanos , Encéfalo , Ansiedad/diagnóstico por imagen , Trastornos de Ansiedad
11.
Front Physiol ; 14: 1140870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101700

RESUMEN

Objectives: This work aimed to investigate the feasibility and diagnostic value of synthetic MRI, including T1, T2 and PD values in determining the severity of cervical spondylotic myelopathy (CSM). Methods: All subjects (51 CSM patients and 9 healthy controls) underwent synthetic MRI scan on a 3.0T GE MR scanner. The cervical canal stenosis degree of subjects was graded 0-III based on the method of a MRI grading system. Regions of interest (ROIs) were manually drawn at the maximal compression level (MCL) by covering the whole spinal cord to generate T1MCL, T2MCL, and PDMCL values in grade I-III groups. Besides, anteroposterior (AP) and transverse (Trans) diameters of the spinal cord at MCL were measured in grade II and grade III groups, and relative values were calculated as follows: rAP = APMCL/APnormal, rTrans = TransMCL/Transnormal. rMIN = rAP/rTrans. Results: T1MCL value showed a decreasing trend with severity of grades (from grade 0 to grade II, p < 0.05), while it increased dramatically at grade III. T2MCL value showed no significant difference among grade groups (from grade 0 to grade II), while it increased dramatically at grade III compared to grade II (p < 0.05). PDMCL value showed no statistical difference among all grade groups. rMIN of grade III was significantly lower than that of grade II (p < 0.05). T2MCL value was negatively correlated with rMIN, whereas positively correlated with rTrans. Conclusion: Synthetic MRI can provide not only multiple contrast images but also quantitative mapping, which is showed promisingly to be a reliable and efficient method in the quantitative diagnosis of CSM.

12.
Sci Total Environ ; 876: 162808, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36921853

RESUMEN

Field investigations in the Northwest Pacific Ocean were carried out to determine the distributions of marine and atmospheric non-methane hydrocarbons (NMHCs), sources and environmental effects. We also conducted deck incubation experiments to investigate the effects of atmospheric aerosol deposition on NMHCs production. The marine NMHCs displayed an increasing trend from the South Equatorial Current to the Oyashio Current. The enhanced phytoplankton biomass and dissolved organic materials (DOM) content in the Kuroshio-Oyashio Extension contributed significantly to isoprene and NMHCs production compared with those in tropical waters and the North Pacific subtropical gyre. The Northwest Pacific Ocean was a significant source of atmospheric NMHCs, with average sea-to-air fluxes of 28.0 ± 38.9, 65.2 ± 73.3, 21.0 ± 26.7, 48.7 ± 62.6, 12.7 ± 15.9, 14.2 ± 16.8, and 41.7 ± 80.4 nmol m-2 d-1 for ethane, ethylene, propane, propylene, i-butane, n-butane, and isoprene, respectively. Influenced by seawater release and OH radical consumption, the atmospheric NMHCs apart from isoprene displayed upward trends with increasing latitude. The deck incubation showed that the addition of aerosols and acidic aerosols significantly boosted phytoplankton biomass, altered community structure, and accelerated the production of isoprene. However, the other six NMHCs showed no obvious responses to atmospheric aerosol deposition in the incubation experiments. In summary, ocean current movements and atmospheric deposition could influence the production and release of isoprene in the Northwest Pacific Ocean.

13.
Eur J Radiol ; 160: 110710, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36701823

RESUMEN

OBJECTIVE: Collateral circulation could help preserve the blood supply and protect penumbra in ischemic stroke (IS), critical for late-window therapeutic decisions and clinical outcomes. In this study, we aimed to investigate the prognostic value of two collateral indexes measured by arterial spin labeling (ASL) and MR angiography (MRA) in subacute IS patients. MATERIALS AND METHODS: Fifty-five subacute IS patients with large artery atherosclerosis were retrospectively collected. Arterial transit artifact (ATA) on ASL and good circulation (GC) on MRA were ranked as markers of leptomeningeal collaterals and fast collaterals, respectively. Volume and relative cerebral blood flow (rCBF) of infarct and hypoperfusion area were calculated. Stroke severity was determined by baseline- and discharge- National Institute of Hospital Stroke Scale (NIHSS). Functional independence (FI) was defined as 3-month modified Ranking Scale ≤2. Univariate analyses and multivariable logistic regression analyses were conducted to identify the independent predictors of FI. RESULTS: Thirty-eight patients (69.1 %) presented ATA and 29 (52.7 %) patients presented GC. Univariate analyses showed that baseline-NIHSS, discharge-NIHSS, rCBF of infarct, presence of ATA and GC were associated with FI (P < 0.05). After multivariable adjustment, ATA (adjusted Odds Ratio [OR]: 13.785, 95 % CI: 2.608-72.870, P = 0.002) and GC (adjusted OR: 8.317, 95 % CI: 1.629-42.454, P = 0.011) remained independent predictors of FI. Besides, patients with both ATA and GC had the highest frequencies of FI while patients with neither of them showed the lowest (94.7 % vs 14.3 %, P < 0.001), indicating a positive synergistic effect between ATA and GC. CONCLUSION: The combination of ASL and MRA simultaneously reflects leptomeningeal collaterals and fast collaterals, providing a useful method to predict functional outcomes of subacute IS patients.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Circulación Colateral/fisiología , Estudios Retrospectivos , Marcadores de Spin , Arterias , Angiografía Cerebral/métodos , Circulación Cerebrovascular , Infarto , Isquemia Encefálica/diagnóstico por imagen
14.
RSC Adv ; 12(45): 29291-29299, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36320760

RESUMEN

The structure and electronic properties of puckered GeS nanotubes have been investigated using first-principles density functional theory calculation. Our results show that both the armchair and zigzag GeS nanotubes are semiconductor materials with an adjustable band gap. The band gap increases gradually with increasing the tube diameter, and slowly converges to the monolayer limit. On the application of strain, the GeS nanotubes provide interesting strain-induced band gap variation. When the compressive strain reached 20%, zigzag GeS nanotubes are completely transformed into armchair GeS nanotubes. In addition, the elastic properties of the relatively stable armchair GeS nanotubes have been studied, the Young's modulus of the armchair (11, 11), (13, 13) and (15, 15) nanotubes were calculated to be 227.488 GPa, 211.888 GPa and 213.920 GPa, respectively. Our work confirms that compared with carbon nanotubes, two-dimensional materials with a puckered structure are easier to realize phase transition by stress.

15.
Front Neurosci ; 16: 1019718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203798

RESUMEN

As an important predictor of adulthood psychopathology, self-reported childhood abuse appears heritable and is associated with brain abnormalities. However, the specific genetic mechanisms behind these brain alterations remain largely unknown. This study recruited young adults who reported different degrees of childhood abuse from the community. In order to fully understand the influence of genes on brain changes related to self-reported childhood abuse, various experiments were conducted in this study. Firstly, volume changes of gray matter and white matter related to childhood abuse were investigated by using advanced magnetic resonance imaging techniques. After sequencing the whole exons, we further investigated the relationship between polygenic risk score, brain volume alterations, and childhood abuse score. Furthermore, transcription-neuroimaging association analysis was used to identify risk genes whose expressions were associated with brain volume alterations. The gray matter volumes of left caudate and superior parietal lobule, and white matter volumes of left cerebellum and right temporal lobe-basal ganglia region were significantly correlated with the childhood abuse score. More importantly, brain volume changes mediated the influence of polygenic risk on self-reported childhood abuse. Additionally, transcription-neuroimaging association analysis reported 63 risk genes whose expression levels were significantly associated with childhood abuse-related brain volume changes. These genes are involved in multiple biological processes, such as nerve development, synaptic transmission, and cell construction. Combining data from multiple perspectives, our work provides evidence of brain abnormalities associated with childhood abuse, and further indicates that polygene genetic risk and risk gene expression may affect the occurrence of childhood abuse by brain regulation, which provides insights into the molecularpathology and neuromechanism of childhood adversity. Paying attention to the physical and mental health of high-risk children may be a fundamental way to prevent childhood abuse and promote lifelong mental health.

16.
Brain Imaging Behav ; 16(6): 2681-2689, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36222964

RESUMEN

Beyond causing local injury, stroke disrupts structural and functional organization of the brain networks, exposing patients to a high risk of cognitive impairment by affecting the neural network activity. However, the impact of these pathological changes on cognition-related neural circuits is not well understood. In this study, we mainly focused on structures and directed functional connectivity within the Papez circuit in subacute stroke patients. Forty-five stroke patients and thirty-four age-, sex-matched healthy controls were included in our study. The Papez circuit gray matter were measured to explore ischemia-induced structural alterations. And Granger causality analysis with the hippocampus as seed regions was performed to identify alterations of directional functional connectivity within the neural circuit. We also explored the associations between cerebral changes with cognitive status. Compared with healthy controls, stroke patients revealed marked atrophy in gray matter of the Papez circuit, including ipsilateral hippocampus, amygdala, thalamus, and caudal anterior cingulate gyrus. Additionally, there are alterations in the directed functional connections between the bilateral hippocampus and cingulate gyrus within the Papez circuit. These altered effective connectivities were correlated with cognitive function after cerebrovascular event. Taken together, in the early post-stroke period, disruptions of the Papez circuit in both architecture and directed functional connectivity have already occurred and might affect the cognitive function. These findings have prompted researchers to better understand the potential mechanisms underlying vascular cognitive impairment and to investigate new therapeutic targets that could reduce cognitive burden.


Asunto(s)
Imagen por Resonancia Magnética , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico por imagen , Hipocampo , Giro del Cíngulo , Corteza Cerebral
17.
Quant Imaging Med Surg ; 12(10): 4865-4874, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36185041

RESUMEN

Background: Proton exchange rate (k ex) magnetic resonance imaging (MRI) has recently been developed, with preliminary results demonstrating its potential for evaluating reactive oxygen species. This prospective cohort study investigated the k ex in different stroke stages and its correlation with stroke severity and prognosis. Methods: In all, 96 ischemic stroke patients were included in the study. Patients were divided into 3 groups based on stroke phase (acute, subacute, and chronic). A spin echo-echo planar imaging sequence with presaturation powers of 1.5, 2.5, and 3.5 µT was implemented to obtain Z-spectra, and k ex maps were constructed from direct saturation-removed omega plots. Relative k ex (rk ex) and the relative apparent diffusion coefficient (rADC) were calculated as the ratio of k ex or ADC in the infarcts to values in contralateral tissue, respectively. Correlations between both k ex and rk ex and National Institute of Health Stroke Scale (NIHSS) scores were evaluated. Receiver operating characteristic (ROC) analysis was used to evaluate the performance of k ex, rk ex, rADC, and lesion volume for predicting acute stroke outcome. Results: The k ex was significantly higher in ischemic lesions than in contralateral tissue at all stages. In addition, the k ex of acute lesions was higher than that of subacute and chronic lesions [mean (± SD) 935.1±81.5 vs. 881.4±55.7 and 866.9±76.7 s-1, respectively; P<0.05 and P<0.01, respectively]. The difference in k ex between subacute and chronic lesions was not significant. In acute stroke, there was a limited correlation between a lesion's k ex and NIHSS score (R2=0.16; P=0.01) and between rk ex and NIHSS score (R2=0.28; P=0.001). Acute stroke patients with poor prognosis had significantly higher lesion k ex and rk ex than did those with good prognosis (k ex: 991.1±78.2 vs. 893.1±55.1 s-1, P<0.001; rk ex: 1.28±0.09 vs. 1.15±0.06, P<0.001). In ROC analyses, k ex and rk ex showed favorable predictive performance for acute stroke outcome, with areas under the curve (AUC) of 0.837 and 0.880, respectively, which were slightly but not significantly higher than the AUCs for lesion volume (0.730) and rADC (0.673). Conclusions: This study indicates that k ex MRI is promising for the diagnosis and management of ischemic stroke because it can reflect the oxidative stress of lesions and predict prognosis.

18.
Nanoscale ; 14(38): 14231-14239, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36128830

RESUMEN

Two-dimensional (2D) ferro-type materials have received great attention owing to the remarkable polarization effect in optoelectronics and spintronics. Using the first-principles method, the coupling between ferromagnetism and ferroelectricity is investigated in a multiferroic Janus 1T-FeSSe monolayer, which has a strong Stoner ferromagnetic ground state. The magnetic anisotropy energy (MAE) is apparently impacted by the out-of-plane asymmetry donated ferroelectricity, which is reflected by the asymmetry of the Z-MAE image. The easy magnetization axis of Janus FeSSe is the +y axis with a large MAE of 0.59 meV, rooting in unpaired d electrons of Fe atoms. The transformation of band splitting and Fermi surface can be effectively engineered by different magnetic polarization directions. The ferromagnetic (FM) coupling of the FeSSe monolayer is very robust under external strain within the range of -6% to 6%, while the strength of magnetic moment of Fe atoms and polarization are easily strain-engineered, the intrinsic mechanism of which can be elaborated by the GKA rules that depend on angles and distances. This multiferroic FeSSe monolayer provides a new platform for exploring the coupling of 2D ferromagnetism and ferroelectricity and designing low-dimensional multiferroic electronics.

19.
Theranostics ; 12(12): 5564-5573, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910809

RESUMEN

Rationale: Although non-contrast computed tomography (NCCT) is the recommended examination for the suspected acute ischemic stroke (AIS), it cannot detect significant changes in the early infarction. We aimed to develop a deep-learning model to identify early invisible AIS in NCCT and evaluate its diagnostic performance and capacity for assisting radiologists in decision making. Methods: In this multi-center, multi-manufacturer retrospective study, 1136 patients with suspected AIS but invisible lesions in NCCT were collected from two geographically distant institutions between May 2012 to May 2021. The AIS lesions were confirmed based on the follow-up diffusion-weighted imaging and clinical diagnosis. The deep-learning model was comprised of two deep convolutional neural networks to locate and classify. The performance of the model and radiologists was evaluated by the area under the receiver operator characteristic curve (AUC), sensitivity, specificity, and accuracy values with 95% confidence intervals. Delong's test was used to compare the AUC values, and a chi-squared test was used to evaluate the rate differences. Results: 986 patients (728 AIS, median age, 55 years, interquartile range [IQR]: 47-65 years; 664 males) were assigned to the training and internal validation cohorts. 150 patients (74 AIS, median age, 63 years, IQR: 53-75 years; 100 males) were included as an external validation cohort. The AUCs of the model were 83.61% (sensitivity, 68.99%; specificity, 98.22%; and accuracy, 89.87%) and 76.32% (sensitivity, 62.99%; specificity, 89.65%; and accuracy, 88.61%) for the internal and external validation cohorts based on the slices. The AUC of the model was much higher than that of two experienced radiologists (65.52% and 59.48% in the internal validation cohort; 64.01% and 64.39% in external validation cohort; all P < 0.001). The accuracy of two radiologists increased from 62.00% and 58.67% to 92.00% and 84.67% when assisted by the model for patients in the external validation cohort. Conclusions: This deep-learning model represents a breakthrough in solving the challenge that early invisible AIS lesions cannot be detected by NCCT. The model we developed in this study can screen early AIS and save more time. The radiologists assisted with the model can provide more effective guidance in making patients' treatment plan in clinic.


Asunto(s)
Aprendizaje Profundo , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Anciano , Área Bajo la Curva , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Accidente Cerebrovascular/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
20.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35886977

RESUMEN

Janus Sb and Bi monolayers as a new class of 2D topological insulator materials, which could be fulfilled by asymmetrical functionalizations with methyl or hydroxyl, are demonstrated by first-principles spin-orbit coupling (SOC) electronic structure calculations to conflate nontrivial topology, Rashba splitting and valley-contrast circular dichroism. Cohesive energies and phonon frequency dispersion spectra indicate that all Janus Sb and Bi monolayers possess a structural stability in energetic statics but represent virtual acoustic phonon vibrations of the hydrogen atoms passivating on monolayer surfaces. Band structures of Janus Sb and Bi monolayers and their nanoribbons demonstrate they are nontrivial topological insulators. Rashba spin splitting at G point in Brillouin zone of Janus Bi monolayers arises from the strong SOC px and py orbitals of Bi bonding atoms together with the internal out-of-plane electric field caused by asymmetrical functionalization. Janus Sb and Bi monolayers render direct and indirect giant bandgaps, respectively, which are derived from the strong SOC px and py orbitals at band-valley Brillouin points K and K' where valley-selective circular dichroism of spin valley Hall insulators is also exhibited.


Asunto(s)
Electrónica , Fonones , Electricidad , Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...