Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Mol Neurosci ; 17: 1359294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706874

RESUMEN

Parkinson's disease (PD), ranking as the second most prevalent neurodegenerative disorder globally, presents a pressing need for innovative animal models to deepen our understanding of its pathophysiology and explore potential therapeutic interventions. The development of such animal models plays a pivotal role in unraveling the complexities of PD and investigating promising treatment avenues. In this study, we employed transcriptome sequencing on BmN cells treated with 1 µg/ml rotenone, aiming to elucidate the underlying toxicological mechanisms. The investigation brought to light a significant reduction in mitochondrial membrane potential induced by rotenone, subsequently triggering mitophagy. Notably, the PTEN induced putative kinase 1 (PINK1)/Parkin pathway emerged as a key player in the cascade leading to rotenone-induced mitophagy. Furthermore, our exploration extended to silkworms exposed to 50 µg/ml rotenone, revealing distinctive motor dysfunction as well as inhibition of Tyrosine hydroxylase (TH) gene expression. These observed effects not only contribute valuable insights into the impact and intricate mechanisms of rotenone exposure on mitophagy but also provide robust scientific evidence supporting the utilization of rotenone in establishing a PD model in the silkworm. This comprehensive investigation not only enriches our understanding of the toxicological pathways triggered by rotenone but also highlights the potential of silkworms as a valuable model organism for PD research.

2.
Front Pharmacol ; 15: 1374485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741593

RESUMEN

Background: Fufang Xiaohuoluo pill (FFXHL) is a commonly used prescription in clinical practice for treating rheumatoid arthritis in China, yet its specific mechanism remains unclear. This study aims to elucidate the pharmacological mechanisms of FFXHL using both in vivo and in vitro experiments. Methods: The collagen-induced arthritis (CIA) rat model was established to evaluate FFXHL's therapeutic impact. Parameters that include paw swelling, arthritis scores, and inflammatory markers were examined to assess the anti-inflammatory and analgesic effects of FFXHL. Human fibroblast-like synoviocytes (MH7A cells) is activated by tumour necrosis factor-alpha (TNF-α) were used to explore the anti-inflammatory mechanism on FFXHL. Results: Our findings indicate that FFXHL effectively reduced paw swelling, joint pain, arthritis scores, and synovial pannus hyperplasia. It also lowered serum levels of TNF-α, interleukin-1ß (IL1ß), and interleukin-6 (IL-6). Immunohistochemical analysis revealed decreased expression of nuclear factor-kappa B (NF-κB) p65 in FFXHL-treated CIA rat joints. In vitro experiments demonstrated FFXHL's ability to decrease protein secretion of IL-1ß and IL-6, suppress mRNA expression of matrix metalloproteinases (MMP) -3, -9, and -13, reduce reactive oxygen species (ROS) levels, and inhibit NF-κB p65 translocation in TNF-α stimulated MH7A cells. FFXHL also suppressed protein levels of extracellular signal-regulated kinase (ERK), c-Jun Nterminal kinase (JNK), p38 MAP kinase (p38), protein kinase B (Akt), p65, inhibitor of kappa B kinase α/ß (IKKα/ß), Toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) induced by TNF-α in MH7A cells. Conclusion: The findings imply that FFXHL exhibits significant anti-inflammatory and antiarthritic effects in both CIA rat models and TNF-α-induced MH7A cells. The potential mechanism involves the inactivation of TLR4/MyD88, mitogen-activated protein kinases (MAPKs), NF-κB, and Akt pathways by FFXHL.

3.
J Agric Food Chem ; 72(18): 10376-10390, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38661058

RESUMEN

20(S)-Protopanaxadiol (PPD) is one of the bioactive ingredients in ginseng and possesses neuroprotective properties. Brain-type creatine kinase (CK-BB) is an enzyme involved in brain energy homeostasis via the phosphocreatine-creatine kinase system. We previously identified PPD as directly bound to CK-BB and activated its activity in vitro. In this study, we explored the antidepressive effects of PPD that target CK-BB. First, we conducted time course studies on brain CK-BB, behaviors, and hippocampal structural plasticity responses to corticosterone (CORT) administration. Five weeks of CORT injection reduced CK-BB activity and protein levels and induced depression-like behaviors and hippocampal structural plasticity impairment. Next, a CK inhibitor and an adeno-associated virus-targeting CKB were used to diminish CK-BB activity or its expression in the brain. The loss of CK-BB in the brain led to depressive behaviors and morphological damage to spines in the hippocampus. Then, a polyclonal antibody against PPD was used to determine the distribution of PPD in the brain tissues. PPD was detected in the hippocampus and cortex and observed in astrocytes, neurons, and vascular endotheliocytes. Finally, different PPD doses were used in the chronic CORT-induced depression model. Treatment with a high dose of PPD significantly increased the activity and expression of CK-BB after long-term CORT injection. In addition, PPD alleviated the damage to depressive-like behaviors and structural plasticity induced by repeated CORT injection. Overall, our study revealed the critical role of CK-BB in mediating structural plasticity in CORT-induced depression and identified CK-BB as a therapeutic target for PPD, allowing us to treat stress-related mood disorders.


Asunto(s)
Antidepresivos , Corticosterona , Forma BB de la Creatina-Quinasa , Depresión , Sapogeninas , Animales , Humanos , Masculino , Ratones , Ratas , Antidepresivos/farmacología , Antidepresivos/administración & dosificación , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Forma BB de la Creatina-Quinasa/metabolismo , Forma BB de la Creatina-Quinasa/genética , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Panax/química , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Ratas Sprague-Dawley , Sapogeninas/farmacología
4.
J Invertebr Pathol ; 204: 108104, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608751

RESUMEN

The silkworm, Bombyx mori, stands out as one of the few economically valuable insects within the realm of model organisms. However, Bombyx mori nucleopolyhedrovirus (BmNPV) poses a significant threat, decreasing the quality and quantity of silkworm cocoons. Over the past few decades, a multitude of researchers has delved into the mechanisms that underlie silkworm resistance to BmNPV, employing diverse methodologies and approaching the problem from various angles. Despite this extensive research, the role of alternative splicing (AS) in the silkworm's response to BmNPV infection has been largely unexplored. This study leveraged both third-generation (Oxford Nanopore Technologies) and second-generation (Illumina) high-throughput sequencing technologies to meticulously identify and analyze AS patterns in the context of BmNPV response, utilizing two distinct silkworm strains-the susceptible strain 306 and the resistant strain NB. Consequently, we identified five crucial genes (Dsclp, LOC692903, LOC101743583, LOC101742498, LOC101743809) that are linked to the response to BmNPV infection through AS and differential expression. Additionally, a thorough comparative analysis was conducted on their diverse transcriptomic expression profiles, including alternative polyadenylation, simple sequence repeats, and transcription factors.


Asunto(s)
Empalme Alternativo , Bombyx , Nucleopoliedrovirus , Transcriptoma , Animales , Bombyx/virología , Bombyx/genética , Nucleopoliedrovirus/genética , Resistencia a la Enfermedad/genética
5.
J Ginseng Res ; 47(5): 662-671, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37720572

RESUMEN

Background: 20(S)-protopanaxadiol (PPD), a ginsenoside metabolite, has prominent benefits for the central nervous system, especially in improving learning and memory. However, its transcriptional targets in brain tissue remain unknown. Methods: In this study, we first used mass spectrometry-based drug affinity responsive target stability (DARTS) to identify the potential proteins of ginsenosides and intersected them with the transcription factor library. Second, the transcription factor PURA was confirmed as a target of PPD by biolayer interferometry (BLI) and molecular docking. Next, the effect of PPD on the transcriptional levels of target genes of PURA in brain tissues was determined by qRT-PCR. Finally, bioinformatics analysis was used to analyze the potential biological features of these target proteins. Results: The results showed three overlapping transcription factors between the proteomics of DARTS and transcription factor library. BLI analysis further showed that PPD had a higher direct interaction with PURA than parent ginsenosides. Subsequently, BLI kinetic analysis, molecular docking, and mutations in key amino acids of PURA indicated that PPD specifically bound to PURA. The results of qRT-PCR showed that PPD could increase the transcription levels of PURA target genes in brain. Finally, bioinformatics analysis showed that these target proteins were involved in learning and memory function. Conclusion: The above-mentioned findings indicate that PURA is a transcription target of PPD in brain, and PPD upregulate the transcription levels of target genes related to cognitive dysfunction by binding PURA, which could provide a chemical and biological basis for the study of treating cognitive impairment by targeting PURA.

7.
Sci Adv ; 9(20): eadg2819, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37205760

RESUMEN

Chronic, pathological pain is a highly debilitating condition that can arise and be maintained through central sensitization. Central sensitization shares mechanistic and phenotypic parallels with memory formation. In a sensory model of memory reconsolidation, plastic changes underlying pain hypersensitivity can be dynamically regulated and reversed following the reactivation of sensitized sensory pathways. However, the mechanisms by which synaptic reactivation induces destabilization of the spinal "pain engram" are unclear. We identified nonionotropic N-methyl-d-aspartate receptor (NI-NMDAR) signaling as necessary and sufficient for the reactive destabilization of dorsal horn long-term potentiation and the reversal of mechanical sensitization associated with central sensitization. NI-NMDAR signaling engaged directly or through the reactivation of sensitized sensory networks was associated with the degradation of excitatory postsynaptic proteins. Our findings identify NI-NMDAR signaling as a putative synaptic mechanism by which engrams are destabilized in reconsolidation and as a potential means of treating underlying causes of chronic pain.


Asunto(s)
Nociceptores , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Nociceptores/metabolismo , Dolor , Asta Dorsal de la Médula Espinal/metabolismo , Transducción de Señal
8.
J Agric Food Chem ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36752334

RESUMEN

Ginseng is an important medicinal herb consumed as dietary supplements. Ginsenosides and their metabolites have been reported to enhance cognitive performance, but their underlying mechanisms remain unclear. Brain-type creatine kinase (CK-BB) was previously screened out as one of the potential targets in brain tissues. In vitro, the strongest direct interaction between 20(S)-protopanaxadiol (PPD), a ginsenoside metabolite, and CK-BB was detected using biolayer interferometry (BLI). Drug affinity responsive target stability, cellular thermal shift assay, BLI, and isothermal titration calorimetry were subsequently used, and the binding of PPD to CK-BB was verified. The binding sites of the CK-BB/PPD complex were clarified by molecular docking and site-directed mutagenesis. Enzyme activity assay showed that the binding of PPD to CK-BB in vitro enhanced its activity. In vivo, PPD increased CK-BB activity in D-gal-induced mice. PPD also improved the D-gal-induced cognitive deficits and ameliorated alterations in oxidative stress and hippocampal synaptic plasticity. Therefore, the integration of PPD with its target protein CK-BB may promote CK-BB activity, thereby ameliorating hippocampal synaptic plasticity and cognitive deficits in D-gal-treated mice.

9.
New Phytol ; 237(5): 1667-1683, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36444526

RESUMEN

One of the strategies that plants adopt to cope with an unfavorable environment is to sacrifice their growth for tolerance. Although moderate salt stress can induce root growth inhibition, the molecular mechanisms regulating this process have yet to be elucidated. Here, we found that overexpression of a zinc finger-homeodomain family transcription factor, HOMEOBOX PROTEIN 24 (HB24), led to longer primary roots than in the wild-type in the presence of 125 mM NaCl, whereas this phenotype was reversed for the hb24 loss-of-function mutant, indicating a negative impact of HB24 on salt-induced root growth inhibition. We then found that salt stress triggered the degradation of HB24 via the ubiquitin-proteasome pathway, as mediated by a plant U-box type E3 ubiquitin ligase 30 (PUB30) that directly targets HB24. We verified that HB24 is able to directly bind to the promoters of Sugars Will Eventually be Exported Transporter 11/12 (SWEET11/12) to regulate their expression in roots. Through genetic and biochemical assays, we further demonstrated that the HB24-SWEET11 module plays a negative role in salt-induced root growth inhibition. Therefore, we propose that under salt stress, PUB30 mediates HB24's degradation, thereby downregulating the expression of SWEET11, resulting in reduced sucrose supply and root growth inhibition.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Raíces de Plantas , Estrés Salino , Sacarosa , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación hacia Abajo/genética , Regulación hacia Abajo/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Salino/genética , Estrés Salino/fisiología , Estrés Fisiológico/genética , Sacarosa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
Cancer Biol Med ; 21(3)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38164737

RESUMEN

Lung cancer is the most common and fatal malignant disease worldwide and has the highest mortality rate among tumor-related causes of death. Early diagnosis and precision medicine can significantly improve the survival rate and prognosis of lung cancer patients. At present, the clinical diagnosis of lung cancer is challenging due to a lack of effective non-invasive detection methods and biomarkers, and treatment is primarily hindered by drug resistance and high tumor heterogeneity. Liquid biopsy is a method for detecting circulating biomarkers in the blood and other body fluids containing genetic information from primary tumor tissues. Bronchoalveolar lavage fluid (BALF) is a potential liquid biopsy medium that is rich in a variety of bioactive substances and cell components. BALF contains information on the key characteristics of tumors, including the tumor subtype, gene mutation type, and tumor environment, thus BALF may be used as a diagnostic supplement to lung biopsy. In this review, the current research on BALF in the diagnosis, treatment, and prognosis of lung cancer is summarized. The advantages and disadvantages of different components of BALF, including cells, cell-free DNA, extracellular vesicles, and microRNA are introduced. In particular, the great potential of extracellular vesicles in precision diagnosis and detection of drug-resistant for lung cancer is highlighted. In addition, the performance of liquid biopsies with different body fluid sources in lung cancer detection are compared to facilitate more selective studies involving BALF, thereby promoting the application of BALF for precision medicine in lung cancer patients in the future.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Líquido del Lavado Bronquioalveolar , Medicina de Precisión , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Mutación
13.
J Ginseng Res ; 46(6): 750-758, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36312734

RESUMEN

Background: Mild cognitive impairment (MCI) is a transitional condition between normality and dementia. Ginseng is known to have effects on attenuating cognitive deficits in neurogenerative diseases. Ginsenosides are the main bioactive component of ginseng, and their protein targets have not been fully understood. Furthermore, no thorough analysis is reported in ginsenoside-related protein targets in MCI. Methods: The candidate protein targets of ginsenosides in brain tissues were identified by drug affinity responsive target stability (DARTS) coupled with label-free liquid chromatography-mass spectrometry (LC-MS) analysis. Network pharmacology approach was used to collect the therapeutic targets for MCI. Based on the above-mentioned overlapping targets, we built up a protein-protein interaction (PPI) network in STRING database and conducted gene ontology (GO) enrichment analysis. Finally, we assessed the effects of ginseng total saponins (GTS) and different ginsenosides on mitochondrial function by measuring the activity of the mitochondrial respiratory chain complex and performing molecular docking. Results: We screened 2526 MCI-related protein targets by databases and 349 ginsenoside-related protein targets by DARTS. On the basis of these 81 overlapping genes, enrichment analysis showed the mitochondria played an important role in GTS-mediated MCI pharmacological process. Mitochondrial function analysis showed GTS, protopanaxatriol (PPT), and Rd increased the activities of complex I in a dose-dependent manner. Molecular docking also predicted the docking pockets between PPT or Rd and mitochondrial respiratory chain complex I. Conclusion: This study indicated that ginsenosides might alleviate MCI by targeting respiratory chain complex I and regulating mitochondrial function, supporting ginseng's therapeutic application in cognitive deficits.

14.
Oncoimmunology ; 11(1): 2127282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185809

RESUMEN

A major challenge in natural killer (NK) cell immunotherapy is the limited persistence of NK cells in vivo. However, the proliferation of NK cells is dependent on cytokines such as interleukin-2 (IL-2). Although IL-2 is a critical cytokine for NK cell activation and survival, IL-2 administration in adoptive NK cell therapy can induce adverse toxicities. To improve the persistence of NK cells and attenuate the systemic toxicity of IL-2, we constructed a cell-restricted artificial IL-2, named membrane-bound IL-2 (mbIL-2), comprising human IL-2 and human IL-2Rα joined by a classic linker. We found that mbIL-2-activated NK-92 cells can survive and proliferate in vitro and in vivo, independent of exogenous IL-2, while mbIL-2-expressing NK-92 cells do not support bystander cell survival or proliferation. Additionally, mbIL-2 enhanced NK-92 cell-mediated antitumor activity by tuning the IL-2 receptor downstream signals and NK cell receptor repertoire expression. To conclude, our novel mbIL-2 improves NK-92 cell persistence and enhances NK-92 cell-mediated antitumor activity. NK-92 cells genetically modified to express the novel mbIL-2 with potential significance for clinical development.


Asunto(s)
Interleucina-2 , Células Asesinas Naturales , Citocinas/metabolismo , Humanos , Interleucina-2/metabolismo , Interleucina-2/farmacología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Células Asesinas Naturales/metabolismo , Receptores de Interleucina-2/metabolismo , Receptores de Células Asesinas Naturales/metabolismo
15.
J Ginseng Res ; 46(5): 666-674, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36090685

RESUMEN

Background: Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods: Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3ß activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results: TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3ß (p-Ser9 GSK 3ß), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3ß activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3ß polypeptide. PPD promoted the binding and subsequently decreased GSK 3ß activity. Conclusion: These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3ß (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3ß kinase activity, thereby activating the plasticity-related CREB-BDNF signaling pathway.

16.
Front Plant Sci ; 13: 900035, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909744

RESUMEN

The Chinese Herbal Medicine (CHM) has been used worldwide in clinic to treat the vast majority of human diseases, and the healing effect is remarkable. However, the functional components and the corresponding pharmacological mechanism of the herbs are unclear. As one of the main means, the high-throughput sequencing (HTS) technologies have been employed to discover and parse the active ingredients of CHM. Moreover, a tremendous amount of effort is made to uncover the pharmacodynamic genes associated with the synthesis of active substances. Here, based on the genome-assembly and the downstream bioinformatics analysis, we present a comprehensive summary of the application of HTS on CHM for the synthesis pathways of active ingredients from two aspects: active ingredient properties and disease classification, which are important for pharmacological, herb molecular breeding, and synthetic biology studies.

17.
Front Aging Neurosci ; 14: 977999, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992602

RESUMEN

The preclinical diagnosis and clinical practice for Alzheimer's disease (AD) based on liquid biopsy have made great progress in recent years. As liquid biopsy is a fast, low-cost, and easy way to get the phase of AD, continual efforts from intense multidisciplinary studies have been made to move the research tools to routine clinical diagnostics. On one hand, technological breakthroughs have brought new detection methods to the outputs of liquid biopsy to stratify AD cases, resulting in higher accuracy and efficiency of diagnosis. On the other hand, diversiform biofluid biomarkers derived from cerebrospinal fluid (CSF), blood, urine, Saliva, and exosome were screened out and biologically verified. As a result, more detailed knowledge about the molecular pathogenesis of AD was discovered and elucidated. However, to date, how to weigh the reports derived from liquid biopsy for preclinical AD diagnosis is an ongoing question. In this review, we briefly introduce liquid biopsy and the role it plays in research and clinical practice. Then, we summarize the established fluid-based assays of the current state for AD diagnostic such as ELISA, single-molecule array (Simoa), Immunoprecipitation-Mass Spectrometry (IP-MS), liquid chromatography-MS, immunomagnetic reduction (IMR), multimer detection system (MDS). In addition, we give an updated list of fluid biomarkers in the AD research field. Lastly, the current outstanding challenges and the feasibility to use a stand-alone biomarker in the joint diagnostic strategy are discussed.

18.
Front Aging Neurosci ; 14: 975248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016854

RESUMEN

Parkinson's disease is the second most common neurodegenerative disease after Alzheimer's disease, which imposes an ever-increasing burden on society. Many studies have indicated that oxidative stress may play an important role in Parkinson's disease through multiple processes related to dysfunction or loss of neurons. Besides, several subtypes of non-coding RNAs are found to be involved in this neurodegenerative disorder. However, the interplay between oxidative stress and regulatory non-coding RNAs in Parkinson's disease remains to be clarified. In this article, we comprehensively survey and overview the role of regulatory ncRNAs in combination with oxidative stress in Parkinson's disease. The interaction between them is also summarized. We aim to provide readers with a relatively novel insight into the pathogenesis of Parkinson's disease, which would contribute to the development of pre-clinical diagnosis and treatment.

19.
Phys Rev Lett ; 128(24): 247204, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35776458

RESUMEN

The effect of spin currents on the magnetic order of insulating antiferromagnets (AFMs) is of fundamental interest and can enable new applications. Toward this goal, characterizing the spin-orbit torques (SOTs) associated with AFM-heavy-metal (HM) interfaces is important. Here we report the full angular dependence of the harmonic Hall voltages in a predominantly easy-plane AFM, epitaxial c-axis oriented α-Fe_{2}O_{3} films, with an interface to Pt. By modeling the harmonic Hall signals together with the α-Fe_{2}O_{3} magnetic parameters, we determine the amplitudes of fieldlike and dampinglike SOTs. Out-of-plane field scans are shown to be essential to determining the dampinglike component of the torques. In contrast to ferromagnetic-heavy-metal heterostructures, our results demonstrate that the fieldlike torques are significantly larger than the dampinglike torques, which we correlate with the presence of a large imaginary component of the interface spin-mixing conductance. Our work demonstrates a direct way of characterizing SOTs in AFM-HM heterostructures.

20.
Nat Commun ; 13(1): 3207, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680861

RESUMEN

In Fall 2020, universities saw extensive transmission of SARS-CoV-2 among their populations, threatening health of the university and surrounding communities, and viability of in-person instruction. Here we report a case study at the University of Illinois at Urbana-Champaign, where a multimodal "SHIELD: Target, Test, and Tell" program, with other non-pharmaceutical interventions, was employed to keep classrooms and laboratories open. The program included epidemiological modeling and surveillance, fast/frequent testing using a novel low-cost and scalable saliva-based RT-qPCR assay for SARS-CoV-2 that bypasses RNA extraction, called covidSHIELD, and digital tools for communication and compliance. In Fall 2020, we performed >1,000,000 covidSHIELD tests, positivity rates remained low, we had zero COVID-19-related hospitalizations or deaths amongst our university community, and mortality in the surrounding Champaign County was reduced more than 4-fold relative to expected. This case study shows that fast/frequent testing and other interventions mitigated transmission of SARS-CoV-2 at a large public university.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Prueba de COVID-19 , Humanos , SARS-CoV-2/genética , Sensibilidad y Especificidad , Universidades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...