Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(19): 24671-24682, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695273

RESUMEN

Polyethylene oxide (PEO)-based electrolytes are the most widely used solid polymer electrolyte (SPE) due to their high safety, excellent ability to dissociate lithium salts, low cost, and ease of preparation. However, low ionic conductivity and narrow electrochemical stability window limit their potential for further development. "Polymer-in-salt" electrolytes exhibit superior electrochemical performance; however, the high lithium salt concentration makes the SPE mechanically fragile when facing lithium dendrites. Therefore, preparing an SPE that can withstand a high concentration of lithium salt while still maintaining good mechanical properties has become a valuable challenge. In this study, a macroscopically homogeneous but nanoscopically phase-separated polymer matrix was designed as an electrolyte that can withstand a high concentration of lithium salt while retaining good mechanical properties, and this study investigated changes in the Li+ solvation structure within the electrolyte and analyzed the reasons for the simultaneous achievement of good ionic conductivity (1.02 × 10-3 S cm-1 at 60 °C) and mechanical properties (7 MPa at room temperature). The formation of large ion clusters at the phase interface and selective enrichment of lithium salt in specific regions are found to play crucial roles, and the critical current density (CCD) can reach a value of 2.2 mA cm-2. This work demonstrates a promising design approach for polymer electrolytes that achieves an optimal balance between SPE conductivity and mechanical properties through microstructure control.

2.
Int J Dermatol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632699

RESUMEN

BACKGROUND: Generalized pustular psoriasis (GPP) is a rare, potentially life-threatening skin disease often requiring long-term therapy. We aimed to evaluate the use of Interleukin (IL)-17A inhibitors (secukinumab and ixekizumab) in GPP patients over 96 weeks. METHODS: We retrospectively analyzed a case series of 18 patients with GPP who received secukinumab (n = 13) and ixekizumab (n = 5) therapy with a 96-week follow-up period. The primary effectiveness analysis included determining the percentage of patients who achieved ≥90% or 100% improvement in the Generalized Pustular Psoriasis Area and Severity Index (GPPASI) score. Adherence was captured using the medication possession ratio (MPR). RESULTS: Using the as-observed (AO) method, 87% and 67% of patients treated with secukinumab or ixekizumab achieved GPPASI 90 and 100 responses, respectively. At Week 96, the mean GPPASI improvements from baseline GPPASI were 96.3% (95% CI: 0.91-1.01) using the AO method. After Week 48, 14 patients tapered (n = 8) or terminated (n = 6) the treatment. High-adherence therapy (MPR ≥ 80%) was significantly superior to the low-adherence group in the rate of patients achieving a GPPASI 100 response (AO, 100% vs. 38%, P < 0.05). By Week 96, 5 (27.8%) patients had new GPP flares, and 4 (80%) were in the low-adherence group. No new safety signals occurred. CONCLUSION: IL-17A inhibitors led to effective and sustained improvement in GPP patients, and high-adherence therapy had long-term positive effects on skin clearance. Given its relapsing nature, improving compliance is beneficial for long-term clinical management.

3.
J Colloid Interface Sci ; 608(Pt 2): 1619-1626, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742078

RESUMEN

Compressibility of zinc-manganese oxide (Zn-MnO2) batteries is an essential element of modern flexible electronics. Hydrogel electrolytes with superior elasticity and compressibility are highly demand to guarantee a stable energy output of the flexible Zn-MnO2 battery. Herein, a highly compressible hydrogel electrolyte was developed by introducing soybean protein isolate nanoparticles (SPI) into covalently cross-linked polyacrylamide (PAAM) polymer networks. The SPI/PAAM hydrogel electrolyte for Zn-MnO2 battery possessed outstanding reversible compressibility due to the aggregation of SPI nanoparticles on the PAAM chains through the weak electrostatic interaction, which could dissipate energy effectively. Consequently, the Zn-MnO2 battery based on the compressible hydrogel electrolyte displayed a decent specific capacity (299.3 mA h g-1) and desirable capacity retention rate (78.2%) after 500 charge/discharge cycles. Notably, the device could maintain stable power output under 96% compress strain and light the bulb even under severe mechanical stimulation like being-bent and hammered. It's believed that the compressible Zn-MnO2 batteries hold enormous potential as the energy storage devices in the field of flexible wearable electronics.


Asunto(s)
Hidrogeles , Compuestos de Manganeso , Electrólitos , Óxidos , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...