Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 325(Pt A): 116478, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272291

RESUMEN

The occurrence of pharmaceutical active compounds (PhACs) in aquatic environments is a cause for concern due to potential adverse effects on human and ecosystem health. Constructed wetlands (CWs) are cost-efficient and sustainable wastewater treatment systems for the removal of these PhACs. The removal processes and mechanisms comprise a complex interplay of photodegradation, biodegradation, phytoremediation, and sorption. This review synthesized the current knowledge on CWs for the removal of 20 widely detected PhACs in wastewater. In addition, the major removal mechanisms and influencing factors are discussed, enabling comprehensive and critical understanding for optimizing the removal of PhACs in CWs. Consequently, potential strategies for intensifying CWs system performance for PhACs removal are discussed. Overall, the results of this review showed that CWs performance in the elimination of some pharmaceuticals was on a par with conventional wastewater treatment plants (WWTPs) and, for others, it was above par. Furthermore, the findings indicated that system design, operational, and environmental factors played important but highly variable roles in the removal of pharmaceuticals. Nonetheless, although CWs were proven to be a more cost-efficient and sustainable technology for pharmaceuticals removal than other engineered treatment systems, there were still several research gaps to be addressed, mainly including the fate of a broad range of emerging contaminants in CWs, identification of specific functional microorganisms, transformation pathways of specific pharmaceuticals, assessment of transformation products and the ecotoxicity evaluation of CWs effluents.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Humanos , Aguas Residuales/análisis , Humedales , Eliminación de Residuos Líquidos/métodos , Ecosistema , Biodegradación Ambiental , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis
2.
Sci Total Environ ; 843: 157039, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35777569

RESUMEN

Constructed wetlands (CWs) are widely used for non-point source pollution control and water environmental quality improvement. Though it is effective in water quality improvement under most conditions, the overall impacts on the ecological environment in terms of greenhouse gases (GHGs) emissions is a growing concern. Besides, large area requirement has limited further applications of the technology in urban areas. A novel assessment tool of integrating grey water footprint into the ecological footprint framework is established for the assessment of pilot-scale CWs. Findings are compared with a natural riparian wetland adjacent to the researched CWs which were monitored simultaneously. Results demonstrated the CWs had relatively good water quality polishing performance, especially for nitrogen removal. Nonetheless, a large amount of CO2 and some CH4 and N2O emissions were recorded. Meanwhile, a substantial amount of CO2 was also sequestrated by wetland plants via photosynthesis. The strong reducing environment of the CWs inhibited CO2 and N2O generation to a great extent. Calculation of all gaseous emissions and sequestration in CO2 equivalents demonstrated that CWs are an efficient carbon sink. By contrast, the natural wetland was a carbon source because of the high emission of CO2 and N2O under its weak reducing environment conditions and low gross primary production. The carbon footprints of the constructed and natural wetlands were -24.24 and 12.99 gha respectively. Modified ecological footprint values were determined by integrating the carbon footprint, water footprint and build-up lands footprint, and a value of -24.36 gha was obtained for the CWs and 12.99 gha for the natural wetlands. The results indicated that the CWs had substantial beneficial impacts on the ecological environment. On account of the multifunctional service values provided by the CWs, a typical paradigm for water pollution remediation and carbon sequestration was presented for ecological and environmental governance, especially for riparian areas.


Asunto(s)
Dióxido de Carbono , Humedales , Conservación de los Recursos Naturales , Política Ambiental , Metano , Óxido Nitroso
3.
Sci Total Environ ; 845: 157300, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35842169

RESUMEN

Free water surface flow (FWS) constructed wetlands (CWs) have been broadly applied for polishing secondary treated effluents. Dissolved organic matter derived from FWS CWs (WDOM) plays key roles in contaminants transformations. Conversely, photodegradation could shape the quantity and quality of WDOM, thereby affecting its roles in the photolysis of organic micropollutants (OMPs). Nevertheless, whether and how solar irradiation-induced photodegradation modify the properties of WDOM, and the effects of WDOM on the photodegradation of OMPs remain unclear. This study elucidates the photochemical behavior of two WDOM isolated from field-scale FWS CWs for effluent polishing under simulated sunlight irradiation using spectroscopic tools and high-resolution mass spectra. Furthermore, the roles of WDOM in the photodegradation of Bisphenol A (BPA), as a representative endocrine-disrupting compound (EDC), were comprehensively investigated. Solar irradiation was demonstrated to lower the molecular weight and aromaticity of WDOM, as well as weaken its light absorption. Ultrahigh-resolution mass spectra further confirmed that aromatic and unsaturated structures were susceptible to solar irradiation-induced photodegradation reactions. Subsequently, less aromatic and more saturated structures eventually formed under sunlight irradiation, consistent with the result from spectroscopic characterization. The reactive species produced from WDOM significantly enhanced the photodegradation of BPA with the kobs noticeably increasing 4-fold compared with the kobs for direct photolysis. Additionally, 3WDOM* was identified as the dominant reactive species leading to the photolysis of BPA in the presence of WDOM. These findings improve understanding of the phototransformation behavior of WDOM under sunlight irradiation and the roles that WDOM plays in the photochemical fate of coexisting OMPs in CWs treatment systems.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Compuestos de Bencidrilo , Materia Orgánica Disuelta , Fenoles , Fotólisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Humedales
4.
J Hazard Mater ; 424(Pt C): 127611, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34740163

RESUMEN

Vegetations play a vital role in the ecological function of constructed wetlands (CW), but the systemic phytoremediation mechanism of CW is still unclear. An integrated vertical-flow constructed wetland (IVCW) was established to elucidate the phytoremediation mechanisms and plants eco-physiological response to an emerging contaminant, sulfamethoxazole (SMX). Attenuation of SMX in IVCW with and without vegetation (Acorus calamus) are comparatively analyzed. The results showed significant enhancement of removal efficiencies of total nitrogen (via intensified denitrification) and SMX by up to 10% respectively with vegetation. A unique micro-rhizo environment was created by stimulating the denitrifiers, Clostridium_sensu_stricto, Ignavibacterium, Rhodanobacter, and Geobacter. Free-living plant growth-promoting bacteria, unclassified_Burkholderiales and unclassified_Betaproteobacteria, proliferated in the rhizosphere, protecting the growth mechanism of A. calamus and, consequently, promoting performance of the IVCW. Overall, A. calamus exhibited tolerance to SMX, maintaining its photosynthesis rate and stabilizing the plant cell structure by an effective antioxidant system. The growth and defense mechanisms of A. calamus appeared to positively correlate with the IVCW performance, whereby the photosynthetic rate and antioxidant enzymes activities peaked together with the maximum removal efficiency of TN (77.81%) and SMX (99.88%). The contribution of vegetation to ecotoxicity reduction in CW might be underrated as absorbed SMX could be phytodegraded into less toxic metabolites via specific enzymes.


Asunto(s)
Aguas Residuales , Humedales , Biodegradación Ambiental , Nitrógeno/análisis , Sulfametoxazol
5.
J Environ Manage ; 294: 113041, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34126535

RESUMEN

Dissolved organic matter (DOM) is viewed as one of the most chemically active organic substances on earth. It plays vital roles in the fate, bioavailability and toxicity of aquatic exogenous chemical species (e.g., heavy metals, organic pollutants, and nanomaterials). The characteristics of DOM such low concentrations, salt interference and complexity in aquatic environments and limitations of pretreatment for sample preparation and application of characterization techniques severely limit understanding of its nature and environmental roles. This review provides a characterization continuum of aquatic DOM, and demonstrate its biogeochemical implications, enabling in-depth insight into its nature and environmental roles. A synthesis of the effective DOM pretreatment strategies, comprising extraction and fractionation methods, and characterization techniques is presented. Additionally, the biogeochemical dynamics of aquatic DOM and its environmental implications are discussed. The findings indicate the collection of representative DOM samples from water as the first and critical step for characterizing its properties, dynamics, and environmental implications. However, various pretreatment procedures may alter DOM composition and structure, producing highly variable recoveries and even influencing its subsequent characterization. Therefore, complimentary use of various characterization techniques is highly recommended to obtain as much information on DOM as possible, as each characterization technique exhibits various advantages and limitations. Moreover, DOM could markedly change the physical and chemical properties of exogenous chemical species, influencing their transformation and mobility, and finally altering their potential bioavailability and toxicity. Several research gaps to be addressed include the impact of pretreatment on the composition and structure of aquatic DOM, molecular-level structural elucidation for DOM, and assessment of the effects of DOM dynamics on the fate, bioavailability and toxicity of exogenous chemical species.


Asunto(s)
Contaminantes Ambientales , Fraccionamiento Químico
6.
Sci Total Environ ; 753: 141768, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32896733

RESUMEN

Natural sunlight is a vital environmental element and plays a significant role in the ecological storage of reclaimed water (RW), but its impacts on RW quality are poorly understood. In this study, sunlight-induced changes in RW with a focus on dissolved organic matter (rDOM) and 52 residual micropollutants were investigated in the field during the summer and winter seasons. The results indicated that sunlight exposure led to the dissipation of chromophoric DOM (CDOM) in the summer (55% loss) and winter (19% loss) after 14 consecutive sunny days. During open storage of RW, CDOM absorption in UVC regions was preferentially removed in the summer, while during the winter there was preferential removal of CDOM in UVA regions. The results also showed higher fluorescent DOM (FDOM) removal in summer than in winter (49% and 28%, respectively). Results in both seasons indicated that humic acid-like compounds were the most photolabile fractions and were preferentially removed under sunlight exposure. Sunlight also induced attenuation of micropollutants in the summer and winter at reductions of 66% and 24% from the initial values, respectively. Significant attenuation (>75%) was only observed for endocrine-disrupting chemicals, pharmaceuticals, and sunscreens in the summer, but they accounted for 76% of the total concentrations. Vibrio fischeri toxicity tests demonstrated that sunlight constantly decreased the luminescent bacteria acute toxicity of RW, which was estimated to be caused mainly by the sunlight-induced changes of FDOM and CDOM, while the detected micropollutants could only explain 0.02%-2% of acute toxicity. These findings have important implications regarding our understanding of the ecological storage of reclaimed water and the contribution of management strategies.


Asunto(s)
Luz Solar , Agua , Agua Dulce/análisis , Sustancias Húmicas/análisis , Calidad del Agua
7.
Bioresour Technol ; 316: 123927, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32750641

RESUMEN

The effects of mix planting on the functions of plants, microorganisms, and their interactions were studied in a CW planted with Phragmites australis and Typha orientalis over six years. Findings show notable competition among plant species, with excessive overgrowth of the dominant species (P. australis) over T. orientalis. The excessive outcompeting by P. australis resulted in significantly higher plant density and biomass of 20.1 times and 11.2 times, respectively than that of T. orientalis. Interspecific competition appeared to considerably intensify plants contributions to nitrogen and phosphorus removal, which increased from circa 9% in the first year up to 42% in the sixth year. High-throughput pyrosequencing and network analyses demonstrated that the dominant species stands harbor diverse bacterial communities that could enhance the wetland performance through carbon degradation, nutrient cycling, and supporting plant growth. These results provide useful insights into the interactive effects of plants and bacteria in polyculture constructed wetlands.


Asunto(s)
Contaminantes Ambientales , Typhaceae , Bacterias/genética , Fósforo , Poaceae , Eliminación de Residuos Líquidos , Humedales
8.
Environ Sci Pollut Res Int ; 26(33): 33791-33803, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29881960

RESUMEN

The water of urban landscape park is often confronted with microalgal blooms due to its stagnancy. Bioremediation using the combined emergent and submerged plants to control the microalgae growth was investigated in the present study. Two water bodies (Bei and Xin) of Yuyuantan Park in Beijing were selected for the field experiments, and the other lakes with different vegetation of macrophytes were selected as the comparison. The concentrations of chlorophyll a (chl a), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP), and water temperature and transparency were monitored before and after bioremediation from 2015 to 2017. Results showed that the effects of microalgal inhibition were more significant 2 years after bioremediation. Specifically, the chl a of Dong Lake without any vegetation of macrophytes was up to 65.1 µg/L in summer of 2017, while the Bei and Xin Lakes was only 6.2 and 11.3 µg/L, respectively. In addition, the water quality and transparency also improved, with water bodies being crystal clear. Submerged plants played major roles in microalgal control and water quality improvement, compared to the lakes with only emergent plants. The intensity of humic acid-like substances in three-dimensional fluorescent spectra was stronger for the lakes with submerged plants.


Asunto(s)
Biodegradación Ambiental , Calidad del Agua , Beijing , China , Clorofila A , Lagos/química , Nitrógeno/análisis , Fósforo/análisis , Plantas , Mejoramiento de la Calidad , Agua
9.
Sensors (Basel) ; 18(5)2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29747373

RESUMEN

Conventional GPS acquisition methods, such as Max selection and threshold crossing (MAX/TC), estimate GPS code/Doppler by its correlation peak. Different from MAX/TC, a multi-layer binarized convolution neural network (BCNN) is proposed to recognize the GPS acquisition correlation envelope in this article. The proposed method is a double dwell acquisition in which a short integration is adopted in the first dwell and a long integration is applied in the second one. To reduce the search space for parameters, BCNN detects the possible envelope which contains the auto-correlation peak in the first dwell to compress the initial search space to 1/1023. Although there is a long integration in the second dwell, the acquisition computation overhead is still low due to the compressed search space. Comprehensively, the total computation overhead of the proposed method is only 1/5 of conventional ones. Experiments show that the proposed double dwell/correlation envelope identification (DD/CEI) neural network achieves 2 dB improvement when compared with the MAX/TC under the same specification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...