Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(12): 4915-4929, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36926881

RESUMEN

Compound-specific isotope analysis (CSIA) for natural isotope ratios has been recognized as a promising tool to elucidate biodegradation pathways of organic pollutants by microbial enzymes by relating reported kinetic isotope effects (KIEs) to apparent KIEs (AKIEs) derived from bulk isotope fractionations (εbulk). However, for many environmental reactions, neither are the reference KIE ranges sufficiently narrow nor are the mechanisms elucidated to the point that rate-determining steps have been identified unequivocally. In this work, besides providing reference KIEs and rationalizing AKIEs, good relationships have been explained by DFT computations for diverse biodegradation pathways with known enzymatic models between the theoretical isotope fractionations (εbulk') from intrinsic KIEs on the rate-determining steps and the observed εbulk. (1) To confirm the mechanistic details of previously reported pathway-dependent CSIA, it includes isotope changes in MTBE biodegradation between hydroxylation by CYP450 and SN2 reaction by cobalamin-dependent methyltransferase, the regioselectivity of toluene biodegradation by CYP450, and the rate-determining step in toluene biodegradation by benzylsuccinate synthase. (2) To yield new fundamental insights into some unclear biodegradation pathways, it consists of the oxidative function of toluene dioxygenase in biodegradation of TCE, the epoxidation mode in biodegradation of TCE by toluene 4-monooxygenase, and the weighted average mechanism in biodegradation of cDCE by CYP450.


Asunto(s)
Contaminantes Ambientales , Isótopos/análisis , Biodegradación Ambiental , Tolueno/análisis , Tolueno/metabolismo , Cinética , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo
2.
Environ Sci Technol ; 57(13): 5368-5379, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36921339

RESUMEN

Metabolism, especially by CYP450 enzymes, is the main reason for mediating the toxification and detoxification of xenobiotics in humans, while some uncommon metabolic pathways, especially for emerging pollutants, probably causing idiosyncratic toxicity are easily overlooked. The pollution of sulfonamide antibiotics in aqueous system has attracted increasing public attention. Hydroxylation of the central amine group can trigger a series of metabolic processes of sulfonamide antibiotics in humans; however, this work parallelly reported the coupling and fragmenting initiated by amino H-abstraction of sulfamethoxazole (SMX) catalyzed by human CYP450 enzymes. Elucidation of the emerging metabolic profiles was mapped via a multistep synergy between computations and experiments, involving preliminary DFT computations and in vitro and in vivo assays, profiling adverse effects, and rationalizing the fundamental factors via targeted computations. Especially, the confirmed SMX dimer was shown to potentially act as a metabolism disruptor in humans, while spin aromatic delocalization resulting in the low electron donor ability of amino radicals was revealed as the fundamental factor to enable coupling of sulfonamide antibiotics by CYP450 through the nonconventional nonrebound pathway. This work may further strengthen the synergistic use of computations prior to experiments to avoid wasteful experimental screening efforts in environmental chemistry and toxicology.


Asunto(s)
Antibacterianos , Contaminantes Ambientales , Humanos , Sulfametoxazol/metabolismo , Sulfanilamida , Sulfonamidas , Sistema Enzimático del Citocromo P-450/metabolismo , Metaboloma
3.
Ecotoxicol Environ Saf ; 237: 113544, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483145

RESUMEN

Aromatic amines, the widely used raw materials in industry, cause long-term exposure to human bodies. They can be metabolized by cytochrome P450 enzymes to form active electrophilic compounds, which will potentially react with nucleophilic DNA to exert carcinogenesis. The short lifetime and versatility of the oxidant (a high-valent iron (IV)-oxo species, compound I) of P450 enzymes prompts us to use theoretical methods to investigate the metabolism of aromatic amines. In this work, the density functional theory (DFT) has been employed to simulate the hydroxylation metabolism through H-abstraction and to calculate the activation energy of this reaction for 28 aromatic amines. The results indicate that the steric effects, inductive effects and conjugative effects greatly contribute to the metabolism activity of the chemicals. The further correlation reveals that the dissociation energy of -NH2 (BDEN-H) can successfully predict the time-consuming calculated activation energy (R2 for aromatic and heteroaromatic amines are 0.93 and 0.86, respectively), so BDEN-H can be taken as a key parameter to characterize the relative stability of aromatic amines in P450 enzymes and further to quickly assess their potential toxicity. The validation results prove such relationship has good statistical performance (qcv2 for aromatic and heteroaromatic amines are 0.95 and 0.90, respectively) and can be used to other aromatic amines in the application domain, greatly reducing computational cost and providing useful support for experimental research.


Asunto(s)
Aminas , Sistema Enzimático del Citocromo P-450 , Simulación por Computador , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Hidroxilación , Oxidantes/química
4.
Chem Res Toxicol ; 35(5): 840-848, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35416036

RESUMEN

Biotransformation, especially by human CYP450 enzymes, plays a crucial role in regulating the toxicity of organic compounds in organisms, but is poorly understood for most emerging pollutants, as their numerous "unusual" biotransformation reactions cannot retrieve examples from the textbooks. Therefore, in order to predict the unknown metabolites with altering toxicological profiles, there is a realistic need to develop efficient methods to reveal the "unusual" metabolic mechanism of emerging pollutants. Combining experimental work with computational predictions has been widely accepted as an effective approach in studying complex metabolic reactions; however, the full quantum chemical computations may not be easily accessible for most environmentalists. Alternatively, this work practiced using the concepts from physical organic chemistry for studying the interrelationships between structure and reactivity of organic molecules, to reveal the "unusual" metabolic mechanism of synthetic phenolic antioxidants catalyzed by CYP450, for which the simple pencil-and-paper and property-computation methods based on physical organic chemistry were performed. The phenol-coupling product of butylated hydroxyanisole (BHA) (based on spin aromatic delocalization) and ipso-addition quinol metabolite of butylated hydroxytoluene (BHT) (based on hyperconjugative effect) were predicted as two "unusual" metabolites, which were further confirmed by our in vitro analysis. We hope this easily handled approach will promote environmentalists to attach importance to physical organic chemistry, with an eye to being able to use the knowledge gained to efficiently predict the fates of substantial unknown synthesized organic compounds in the future.


Asunto(s)
Antioxidantes , Contaminantes Ambientales , Hidroxianisol Butilado/análisis , Hidroxianisol Butilado/química , Hidroxianisol Butilado/metabolismo , Hidroxitolueno Butilado/análisis , Hidroxitolueno Butilado/química , Hidroxitolueno Butilado/metabolismo , Química Orgánica , Sistema Enzimático del Citocromo P-450 , Contaminantes Ambientales/análisis , Humanos , Fenoles/análisis
5.
Chem Res Toxicol ; 35(3): 440-449, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35230092

RESUMEN

Intramolecular phenol coupling reactions of alkaloids can lead to active metabolites catalyzed by the mammalian cytochrome P450 enzyme (P450); however, the mechanistic knowledge of such an "unusual" process is lacking. This work performs density functional theory computations to reveal the P450-mediated metabolic pathway leading from R-reticuline to the morphine precursor salutaridine by exploring possible intramolecular phenol coupling mechanisms involving diradical coupling, radical addition, and electron transfer. The computed results show that the outer-sphere electron transfer with a high barrier (>20.0 kcal/mol) is unlikely to happen. However, for inter-sphere intramolecular phenol coupling, it reveals that intramolecular phenol coupling of R-reticuline proceeds via the diradical mechanism consecutively by compound I and protonated compound II of P450 rather than the radical addition mechanism. The existence of a much higher radical rebound barrier than that of H-abstraction in the quartet high-spin state can endow the R-reticuline phenoxy radical with a sufficient lifetime to enable intramolecular phenol coupling, while the H-abstraction/radical rebound mode with a negligible rebound barrier leading to phenol hydroxylation can only happen in the doublet low-spin state. Therefore, the ratio [coupling]/[hydroxylation] can be approximately reflected by the relative yield of the high-spin and low-spin H-abstraction by P450, which thus can provide a theoretical ratio of 16:1 for R-reticuline, which is in accordance with previous experimental results. Especially, the high rebound barrier of the phenoxy radical derived from the weak electron-donating ability of the phenoxy radical is revealed as an intrinsic nature. Therefore, the revealed intramolecular phenol coupling mechanism can be potentially extended to several other bisphenolic drugs to infer groups of unexpected metabolites in organisms.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Fenol , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Mamíferos/metabolismo , Metabolismo Secundario
6.
Environ Sci Technol ; 55(20): 14037-14050, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34663070

RESUMEN

Precision biotransformation is an envisioned strategy offering detailed insights into biotransformation pathways in real environmental settings using experimentally guided high-accuracy quantum chemistry. Emerging pollutants, whose metabolites are easily overlooked but may cause idiosyncratic toxicity, are important targets of such a strategy. We demonstrate here that complex metabolic reactions of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) catalyzed by human CYP450 enzymes can be mapped via a three-step synergy strategy: (i) screening the possible metabolites via high-throughout (moderate-accuracy) computations; (ii) analyzing the proposed metabolites in vitro by human liver microsomes and recombinant human CYP450 enzymes; and (iii) rationalizing the experimental data via precise mechanisms using high-level targeted computations. Through the bilateral dialogues from qualitative to semi-quantitative to quantitative levels, we show how TDCIPP metabolism especially by CYP3A4 generates bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) as an O-dealkylation metabolite and bis(1,3-dichloro-2-propyl) 3-chloro-1-hydroxy-2-propyl phosphate (alcoholß-dehalogen) as a dehalogenation/reduction metabolite via the initial rate-determining H-abstraction from αC- and ßC-positions. The relative yield ratio [dehalogenation/reduction]/[O-dealkylation] is derived from the relative barriers of H-abstraction at the ßC- and αC-positions by CYP3A4, estimated as 0.002 to 0.23, viz., an in vitro measured ratio of 0.04. Importantly, alcoholß-dehalogen formation points to a new mechanism involving successive oxidation and reduction functions of CYP450, with its precursor aldehydeß-dehalogen being a key intermediate detected by trapping assays and rationalized by computations. We conclude that the proposed three-step synergy strategy may meet the increasing challenge of elucidating biotransformation mechanisms of substantial synthesized organic compounds in the future.


Asunto(s)
Contaminantes Ambientales , Retardadores de Llama , Biotransformación , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Compuestos Organofosforados , Fosfatos
7.
J Environ Manage ; 249: 109425, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31446121

RESUMEN

In the present study, the biodegradation behaviors of petroleum hydrocarbons under various reducing conditions were investigated. n-Alkanes and polycyclic aromatic hydrocarbons (PAHs) were degraded with NO3-, Fe3+, SO42-, or HCO3- as terminal electron acceptors (TEAs), which link to four typical reducing conditions (i.e., nitrate-reducing, ferric-reducing, sulfate-reducing and methanogenic conditions, respectively) in sediment. The fastest degradation rates were achieved under sulfate-reducing conditions with half-lives of 49.51 days for n-alkanes and 58.74 days for PAHs. For short-chain n-alkanes and low-molecular weight (LMW) PAHs, relatively higher removal efficiencies were achieved under nitrate- and ferric-reducing conditions. The degradation of long-chain n-alkanes and high-molecular weight (HMW) PAHs coupled to methanogenesis was the most favored as compared with other reducing conditions. Carboxylation was found to be the principle mechanism for regulating n-alkane degradation coupled to denitrification, while the activation of n-alkanes by the addition of fumarate was the principle mechanism for the n-alkane degradation under sulfate-reducing conditions. The anaerobic metabolism of n-alkanes may not proceed via fumarate addition or carboxylation under ferric-reducing and methanogenic conditions. Illumina HiSeq sequencing revealed dissimilar structures of the microbial communities under various reducing conditions. It is hypothesized that the utilization of different TEAs for n-alkane and PAH degradation resulted in distinct microbial community structures, which were highly correlated with the varied degradation behaviors of petroleum hydrocarbons in sediment. The current results may provide reference value on better understanding the biodegradation behaviors of n-alkanes and PAHs in association with the induced microbial communities in sedimentary environments under the four typical reducing conditions.


Asunto(s)
Microbiota , Petróleo , Hidrocarburos Policíclicos Aromáticos , Biodegradación Ambiental , Hidrocarburos , Sulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...