Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
IEEE Comput Graph Appl ; PP2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231050

RESUMEN

Bus route planning is a complex application problem within the transportation domain, aiming to identify the best route among numerous candidate solutions. Despite existing research significantly reducing the exploration space of solutions, planners still face challenges in further exploring optimal route planning solutions. Specifically, the diversity of route attributes increases the complexity of determining their impact, such as the variety and quantity of reachable points of interest. Therefore, we present BRPVis, an interactive visual analytics system designed to assist bus route planners in exploring optimal solutions through multi-level visualization and rich interaction design. Furthermore, we propose a human-machine collaborative multicriteria decision-making method, which quantitatively analyzes the weights of route attributes while incorporating interactive feedback mechanisms to support personalized route exploration. Based on exploration using real-world traffic datasets, three case studies conducted with domain experts demonstrate that BRPVis effectively provides decision support for bus route planning tasks.

2.
Metabolism ; 161: 156028, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270816

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of chronic liver disease worldwide. Optimal dietary intervention strategies for MAFLD are not standardized. This study aimed to achieve consensus on prevention of MAFLD through dietary modification. A multidisciplinary panel of 55 international experts, including specialists in hepatology, gastroenterology, dietetics, endocrinology and other medical specialties from six continents collaborated in a Delphi-based consensus development process. The consensus statements covered aspects ranging from epidemiology to mechanisms, management, and dietary recommendations for MAFLD. The recommended dietary strategies emphasize adherence to a balanced diet with controlled energy intake and personalized nutritional interventions, such as calorie restriction, high-protein, or low-carbohydrate diets. Specific dietary advice encouraged increasing the consumption of whole grains, plant-based proteins, fish, seafood, low-fat or fat-free dairy products, liquid plant oils, and deeply colored fruits and vegetables. Concurrently, it advised reducing the intake of red and processed meats, saturated and trans fats, ultra-processed foods, added sugars, and alcohol. Additionally, maintaining the Mediterranean or DASH diet, minimizing sedentary behavior, and engaging in regular physical activity are recommended. These consensus statements lay the foundation for customized dietary guidelines and proposing avenues for further research on nutrition and MAFLD.

3.
Appl Microbiol Biotechnol ; 108(1): 467, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292268

RESUMEN

Epigenetic regulation plays a central role in the regulation of a number of cellular processes such as proliferation, differentiation, cell cycle, and apoptosis. In particular, small molecule epigenetic modulators are key elements that can effectively influence gene expression by precisely regulating the epigenetic state of cells. To identify useful small-molecule regulators that enhance the expression of recombinant proteins in Chinese hamster ovary (CHO) cells, we examined a novel dual-HDAC/LSD1 inhibitor I-4 as a supplement for recombinant CHO cells. Treatment with 2 µM I-4 was most effective in increasing monoclonal antibody production. Despite cell cycle arrest at the G1/G0 phase, which inhibits cell growth, the addition of the inhibitor at 2 µM to monoclonal antibody-expressing CHO cell cultures resulted in a 1.94-fold increase in the maximal monoclonal antibody titer and a 2.43-fold increase in specific monoclonal antibody production. In addition, I-4 significantly increased the messenger RNA levels of the monoclonal antibody and histone H3 acetylation and methylation levels. We also investigated the effect on HDAC-related isoforms and found that interference with the HDAC5 gene increased the monoclonal antibody titer by 1.64-fold. The results of this work provide an effective method of using epigenetic regulatory strategies to enhance the expression of recombinant proteins in CHO cells. KEY POINTS: • HDAC/LSD1 dual-target small molecule inhibitor can increase the expression level of recombinant monoclonal antibodies in CHO cells. • By affecting the acetylation and methylation levels of histones in CHO cells and downregulating HDAC5, the production of recombinant monoclonal antibodies increased. • It provides an effective pathway for applying epigenetic regulation strategies to enhance the expression of recombinant proteins.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Epigénesis Genética , Proteínas Recombinantes , Células CHO , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Histonas/genética , Acetilación , Cricetinae , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Metilación
4.
Cell Metab ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39243758

RESUMEN

During the progression of metabolic dysfunction-associated steatohepatitis (MASH), the accumulation of auto-aggressive CD8+ T cells significantly contributes to liver injury and inflammation. Empagliflozin (EMPA), a highly selective inhibitor of sodium-glucose co-transporter 2 (SGLT2), exhibits potential therapeutic benefits for liver steatosis; however, the underlying mechanism remains incompletely elucidated. Here, we found that EMPA significantly reduced the hepatic accumulation of auto-aggressive CD8+ T cells and lowered granzyme B levels in mice with MASH. Mechanistically, EMPA increased ß-hydroxybutyric acid by promoting the ketogenesis of CD8+ T cells via elevating 3-hydroxybutyrate dehydrogenase 1 (Bdh1) expression. The ß-hydroxybutyric acid subsequently inhibited interferon regulatory factor 4 (Irf4), which is crucial for CD8+ T cell activation. Furthermore, the ablation of Bdh1 in T cells aggravated the manifestation of MASH and hindered the therapeutic efficacy of EMPA. Moreover, a case-control study also showed that SGLT2 inhibitor treatment repressed CD8+ T cell infiltration and improved liver injury in patients with MASH. In summary, our study indicates that SGLT2 inhibitors can target CD8+ T cells and may be an effective strategy for treating MASH.

5.
J Am Heart Assoc ; : e036555, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291488

RESUMEN

Engaging in regular exercise and physical activity contributes to delaying the onset of cardiovascular diseases (CVDs). However, the physiological mechanisms underlying the benefits of regular exercise or physical activity in CVDs remain unclear. The disruption of mitochondrial homeostasis is implicated in the pathological process of CVDs. Exercise training effectively delays the onset and progression of CVDs by significantly ameliorating the disruption of mitochondrial homeostasis. This includes improving mitochondrial biogenesis, increasing mitochondrial fusion, decreasing mitochondrial fission, promoting mitophagy, and mitigating mitochondrial morphology and function. This review provides a comprehensive overview of the benefits of physical exercise in the context of CVDs, establishing a connection between the disruption of mitochondrial homeostasis and the onset of these conditions. Through a detailed examination of the underlying molecular mechanisms within mitochondria, the study illuminates how exercise can provide innovative perspectives for future therapies for CVDs.

6.
J Nutr Biochem ; 132: 109696, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094217

RESUMEN

Nobiletin has been reported to protect against obesity-related metabolic disorders by enhancing the circadian rhythm; however its effects on lipid metabolism in adipose tissue are unclear. In this study, mice were fed with high-fat diet (HFD) for four weeks firstly and gavaged with 50 or 200 mg/kg bodyweight/day nobiletin at Zeitgeber time (ZT) 4 for another four weeks while still receiving HFD. At the end of the 8-week experimental period, the mice were sacrificed at ZT4 or ZT8 on the same day. Mature 3T3-L1 adipocytes were treated with nobiletin in the presence or absence of siBmal1, siRora, siRorc, SR8278 or SR9009. Nobiletin reduced the weight of white adipose tissue (WAT) and the size of adipocytes in WAT. At ZT4, nobiletin decreased the TG, TC and LDL-c levels and increased serum FFA level and glucose tolerance. Nobiletin triggered the lipolysis of mesenteric and epididymal WAT at both ZT4 and ZT16. Nobiletin increased the level of RORγ at ZT16, that of BMAL1 and PPARγ at ZT4, and that of ATGL at both ZT4 and ZT16. Nobiletin increased lipolysis and ATGL levels in 3T3-L1 adipocytes in Bmal1- or Rora/c- dependent manner. Dual luciferase assay indicated that nobiletin enhanced the transcriptional activation of RORα/γ on Atgl promoter and decreased the repression of RORα/γ on PPARγ-binding PPRE. Promoter deletion analysis indicated that nobiletin inhibited the suppression of PPARγ-mediated Atgl transcription by RORα/γ. Taken together, nobiletin elevated lipolysis in WAT by increasing ATGL levels through activating the transcriptional activity of RORα/γ and decreasing the repression of RORα/γ on PPARγ-binding PPRE.


Asunto(s)
Células 3T3-L1 , Tejido Adiposo Blanco , Relojes Circadianos , Flavonas , Lipólisis , Ratones Endogámicos C57BL , Animales , Flavonas/farmacología , Lipólisis/efectos de los fármacos , Ratones , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Masculino , Relojes Circadianos/efectos de los fármacos , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Dieta Alta en Grasa/efectos adversos , PPAR gamma/metabolismo , PPAR gamma/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Lipasa/metabolismo , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Aciltransferasas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares
7.
Sci Rep ; 14(1): 19140, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160336

RESUMEN

In recent years, researchers have taken the many-objective optimization algorithm, which can optimize 5, 8, 10, 15, 20 objective functions simultaneously, as a new research topic. However, the current research on many-objective optimization technology also encounters some challenges. For example: Pareto resistance phenomenon, difficult diversity maintenance. Based on the above problems, this paper proposes a many-objective evolutionary algorithm based on three states (MOEA/TS). Firstly, a feature extraction operator is proposed. It can extract the features of the high-quality solution set, and then assist the evolution of the current individual. Secondly, based on Pareto front layer, the concept of "individual importance degree" is proposed. The importance degree of an individual can reflect the importance of the individual in the same Pareto front layer, so as to further distinguish the advantages and disadvantages of different individuals in the same front layer. Then, a repulsion field method is proposed. The diversity of the population in the objective space is maintained by the repulsion field, so that the population can be evenly distributed on the real Pareto front. Finally, a new concurrent algorithm framework is designed. In the algorithm framework, the algorithm is divided into three states, and each state focuses on a specific task. The population can switch freely among these three states according to its own evolution. The MOEA/TS algorithm is compared with 7 advanced many-objective optimization algorithms. The experimental results show that the MOEA/TS algorithm is more competitive in many-objective optimization problems.

8.
Metabolism ; 160: 155999, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39151887

RESUMEN

BACKGROUND: Common metabolic diseases, such as type 2 diabetes mellitus (T2DM), hypertension, obesity, hypercholesterolemia, and metabolic dysfunction-associated steatotic liver disease (MASLD), have become a global health burden in the last three decades. The Global Burden of Disease, Injuries, and Risk Factors Study (GBD) data enables the first insights into the trends and burdens of these metabolic diseases from 1990 to 2021, highlighting regional, temporal and differences by sex. METHODS: Global estimates of disability-adjusted life years (DALYs) and deaths from GBD 2021 were analyzed for common metabolic diseases (T2DM, hypertension, obesity, hypercholesterolemia, and MASLD). Age-standardized DALYs (mortality) per 100,000 population and annual percentage change (APC) between 1990 and 2021 were estimated for trend analyses. Estimates are reported with uncertainty intervals (UI). RESULTS: In 2021, among five common metabolic diseases, hypertension had the greatest burden (226 million [95 % UI: 190-259] DALYs), whilst T2DM (75 million [95 % UI: 63-90] DALYs) conferred much greater disability than MASLD (3.67 million [95 % UI: 2.90-4.61]). The highest absolute burden continues to be found in the most populous countries of the world, particularly India, China, and the United States, whilst the highest relative burden was mostly concentrated in Oceania Island states. The burden of these metabolic diseases has continued to increase over the past three decades but has varied in the rate of increase (1.6-fold to 3-fold increase). The burden of T2DM (0.42 % [95 % UI: 0.34-0.51]) and obesity (0.26 % [95 % UI: 0.17-0.34]) has increased at an accelerated rate, while the rate of increase for the burden of hypertension (-0.30 % [95 % UI: -0.34 to -0.25]) and hypercholesterolemia (-0.33 % [95 % UI: -0.37 to -0.30]) is slowing. There is no significant change in MASLD over time (0.05 % [95 % UI: -0.06 to 0.17]). CONCLUSION: In the 21st century, common metabolic diseases are presenting a significant global health challenge. There is a concerning surge in DALYs and mortality associated with these conditions, underscoring the necessity for a coordinated global health initiative to stem the tide of these debilitating diseases and improve population health outcomes worldwide.


Asunto(s)
Años de Vida Ajustados por Discapacidad , Carga Global de Enfermedades , Salud Global , Enfermedades Metabólicas , Humanos , Enfermedades Metabólicas/epidemiología , Carga Global de Enfermedades/tendencias , Masculino , Femenino , Años de Vida Ajustados por Discapacidad/tendencias , Diabetes Mellitus Tipo 2/epidemiología , Obesidad/epidemiología , Obesidad/complicaciones , Hipertensión/epidemiología , Costo de Enfermedad , Factores de Riesgo , Años de Vida Ajustados por Calidad de Vida
9.
Materials (Basel) ; 17(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39203204

RESUMEN

Continuous dynamic recrystallization (CDRX) is widely acknowledged to occur during hot forming and plays a significant role in microstructure development in alloys with moderate to high stacking fault energy. In this work, the flow stress and CDRX behaviors of the TC18 alloy subjected to hot deformation across a wide range of processing conditions are studied. It is observed that deformation leads to the formation of new low-angle grain boundaries (LAGBs). Subgrains rotate by absorbing dislocations, resulting in an increase in LAGB misorientation and the transition of some LAGBs into high-angle grain boundaries (HAGBs). The HAGBs migrate within the material, assimilating the (sub)grain boundaries. Subsequently, an internal state variable (ISV)-based CDRX model is developed, incorporating parameters such as the dislocation density, adiabatic temperature rise, subgrain rotation, LAGB area, HAGB area, and LAGB misorientation angle distribution. The values of the correlation coefficient (R), relative average absolute error (RAAE), and root-mean-square error (RMSE) between the anticipated true stress and measured stress are 0.989, 6.69%, and 4.78 MPa, respectively. The predicted outcomes demonstrate good agreement with experimental findings. The evolving trends of the subgrain boundary area under various conditions are quantitatively analyzed by assessing the changes in dynamic recovery (DRV)-eliminated dislocations and misorientation angles. Moreover, the ISV-based model accurately predicts the decreases in grain and crystallite sizes with higher strain rates and lower temperatures. The projected outcomes also indicate a transition from a stable and coarse-grained microstructure to a continuously recrystallized substructure.

10.
Exp Cell Res ; 441(2): 114182, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094903

RESUMEN

Kawasaki disease (KD) is a systemic vasculitis with an unknown cause that primarily affects children. The objective of this study was to explore the function and underlying mechanism of mitophagy in Mycoplasma pneumoniae (MP)-induced KD. To create MP-induced KD models, Human coronary endothelial cells (HCAECs) and DBA/2 mice were employed and treated with Mp-Lipid-associated membrane proteins (LAMPs). Lactate dehydrogenase (LDH) levels were tested to determine cellular damage or death. The inflammatory cytokines tumor necrosis factor (TNF)--α and interleukin (IL)-6 were measured using the Enzyme-Linked Immunosorbent Assay (ELISA) method. RT-qPCR and Western blotting were used to determine the expression of Intercellular Adhesion Molecule(ICAM)-1, vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase(iNOS), LC3, p62, PINK1(a mitochondrial serine/threonine-protein kinase), and PARKIN(a cytosolic E3-ubiquitin ligase). The adenosine triphosphate (ATP), reactive oxygen species (ROS), and mitochondrial membrane potential(MMP) levels were measured to determine mitochondrial function. Mitophagy was investigated using immunofluorescence and a mitophagy detection test. Autophagosome and mitochondrial morphology were examined using transmission electron microscopy. To identify inflammatory cell infiltration, hematoxylin and eosin staining was utilized. Mp-LAMPs increased the levels of TNF-α, IL-6, ICAM-1, VCAM-1, and iNOS in an HCAEC cell model, along with LDH release. After Mp-LAMPs exposure, there was a rise in LC3 and a reduction in p62. Meanwhile, the expression of PINK1 and Parkin was increased. Cyclosporin A dramatically increased ATP synthesis and MMP in HCAEC cells treated with Mp-LAMPs, while suppressing ROS generation, demonstrating excessive mitophagy-related mitochondrial dysfunction. Additionally, neither body weight nor artery tissue were affected due to PINK1 and Parkin suppression Cyclosporin A in Mp-LAMPs-treated mice. These findings indicated that PINK1/Parkin-mediated mitophagy inhibition may be a therapeutic target for MP-induced KD.


Asunto(s)
Mitofagia , Síndrome Mucocutáneo Linfonodular , Mycoplasma pneumoniae , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Animales , Síndrome Mucocutáneo Linfonodular/metabolismo , Síndrome Mucocutáneo Linfonodular/patología , Proteínas Quinasas/metabolismo , Humanos , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Mycoplasma pneumoniae/patogenicidad , Ratones Endogámicos DBA , Células Endoteliales/metabolismo , Células Endoteliales/patología , Neumonía por Mycoplasma/metabolismo , Neumonía por Mycoplasma/patología , Neumonía por Mycoplasma/microbiología , Mitocondrias/metabolismo , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial
11.
iScience ; 27(7): 110202, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38993674

RESUMEN

Time-restricted eating (TRE) is a promising obesity management strategy, but weight-loss efficacy varies among participants, and the underlying mechanism is unclear. The study aimed to investigate the role of gut microbiota in weight-loss response during long-term TRE intervention. We analyzed data from 51 obese adults in a 12-month TRE program, categorizing them into distinct weight loss groups (DG) and moderate weight loss groups (MG) based on their TRE responses. Shotgun metagenomic sequencing analysis revealed a significant increase in species closely associated with weight loss effectiveness and metabolic parameter changes in the DG group. Pathways related to fatty acid biosynthesis, glycogen biosynthesis, and nucleotide metabolism were reduced in the DG group and enhanced in the MG group. Next, we identified nine specific species at baseline that contributed better responses to TRE intervention and significant weight loss. Collectively, gut microbiota contributes to responsiveness heterogeneity in TRE and can predict weight-loss effectiveness.

12.
Front Plant Sci ; 15: 1423678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022612

RESUMEN

Introduction: Scutellariae Radix (SR), derived from the root of Scutellaria baicalensis Georgi, is a traditional Chinese medicine (TCM) for clearing heat and cooling blood. It has been used as a traditional herbal medicine and is popular as a functional food in Asian countries today. Methods: In this study, UPLC-Q-TOF-MS was first employed to identify the chemical components in the ethanol extract of SR. Then, the extraction process was optimized using star point design-response surface methodology. Fingerprints of different batches and processed products were established, and chemical markers were screened through a combination of various artificial neural network models. Finally, network pharmacology and molecular simulation techniques were utilized for verification to determine the quality markers. Results: A total of 35 chemical components in SR were identified, and the optimal extraction process was determined as follows: ultrasonic extraction with 80% methanol at a ratio of 120:1 for 70 minutes, with a soaking time of 30 minutes. Through discriminant analysis using various artificial neural network models, the samples of SR could be classified into two categories based on their growth years: Kuqin (dried roots of older plants) and Ziqin (roots of younger plants). Moreover, the samples within each category could be further clustered according to their origins. The four different processed products of SR could also be distinguished separately. Finally, through the integration of network pharmacology and molecular simulation techniques, it was determined that baicalin, baicalein, wogonin, norwogonin, norwogonin-8-O-glucuronide, skullcapflavone II, hispidulin, 8, 8"-bibaicalein, and oroxylin A-7-O-beta-D-glucuronide could serve as quality markers for SR. Discussion: The primary factors affecting the quality of SR were its growth years. The geographic origin of SR was identified as a secondary factor affecting its quality. Processing also had a significant impact on its quality. The selected quality markers have laid the foundation for the quality control of SR, and this research strategy also provides a research paradigm for improving the quality of TCM.

13.
Chem Sci ; 15(26): 9893-9914, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38966358

RESUMEN

Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.

14.
Front Surg ; 11: 1371983, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978989

RESUMEN

Choroid plexus papilloma (CPP) is a rare benign intracranial tumor origin that predominantly manifests in the lateral ventricle in children, accounting for 0.3%-0.6% of all primary intracranial tumors. It is extremely rare to have the CPP in the trigone of the lateral ventricle through the contralateral posterior interhemispheric transfalcine transprecuneus approach (PITTA). Herein, we report this rare case. A 7-year-old girl presented with headache. Magnetic resonance imaging of the brain showed periatrial lesions, and histopathological examination confirmed CPP (WHO grade I). The contralateral PITTA is a safe, effective, reasonable, and appropriate for some lesions in the trigone of the lateral ventricle. It provides a wider surgical angle (especially for the lateral extension) and reduces the risk of disturbance of the optic radiation compared with the conventional approaches. The use of multiple modern neurosurgical techniques, including interventional embolization, intraoperative navigation, microscope, and electrophysiological monitoring, make the procedure much easier and more accurate, and the neuroendoscope adds to the visualization of the microscope and can reduce surgical complications.

15.
Eur Radiol ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033472

RESUMEN

BACKGROUND: Radiomics holds great potential in medical image analysis for various ophthalmic diseases. In recent times, there have been numerous endeavors in this area of research. This systematic review aims to provide a comprehensive assessment of the strengths and limitations of radiomics in ophthalmology. METHOD: Conforming to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, we conducted a systematic review with a pre-registered protocol (PROSPERO: CRD42023446317). We explored the PubMed, Embase, and Cochrane databases for original studies on this topic and made a comprehensive descriptive integration. Furthermore, the included studies underwent quality assessment by the radiomics quality score (RQS). RESULTS: A total of 41 articles from an initial search of 227 studies were finally selected for further analysis. These articles included research across five disease categories and covered seven imaging modalities. The radiomics models demonstrated robust performance, with area under the curve (AUC) values mostly falling within 0.7-1.0. The moderate RQS (mean score: 11.17/36) indicated that most studies were retrospectively, single-center analyses without external validation. CONCLUSIONS: Radiomics holds promising utility in the field of ophthalmology, assisting diagnosis, early-stage screening, and prognostication of treatment response. Artificial intelligence algorithms significantly contribute to the construction of radiomics models in ophthalmology. This study highlights the strengths and challenges of radiomics in ophthalmology and suggests potential avenues for future improvement. CLINICAL RELEVANCE STATEMENT: Radiomics represents a valuable approach for generating innovative imaging markers, enhancing efficiency in clinical diagnosis and treatment, and aiding decision-making in clinical contexts of many ophthalmic diseases, thereby improving overall patient prognosis. KEY POINTS: Radiomics has attracted extensive attention in the field of ophthalmology. Articles included five disease categories over seven imaging modalities, consistently yielding AUCs mostly above 0.7. Current research has few prospective and multi-center studies, underlining the necessity for future high-quality studies.

16.
Materials (Basel) ; 17(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998219

RESUMEN

The effects of partially substituting Al for Cu in Zr59.62Cu18.4-xNi12Al6+xNb3Hf0.78Y0.2 (x = 0, 2, 4, 6, 8 at.%) bulk metallic glasses (BMGs) on their glass-forming ability (GFA), quasi-static and dynamic mechanical properties, and energy characteristics were investigated. The results showed that an appropriate substitution of Al for Cu can improve GFA and reach a critical casting size up to 10 mm. Additionally, with Al replacement of Cu, the change in the distribution and content of free volume inside the BMGs was the main reason for the quasi-static compression plasticity. In contrast, the BMGs exhibited no plasticity during dynamic compression and high-speed impact, owing to the short loading time and thermal softening effect. In terms of energy characteristics, all alloys have a high combustion enthalpy. And on the surface of the fragments collected from impact, the active elements Zr, Al, and Nb reacted because of the adiabatic temperature rise. Further, x = 4 at.% Zr-based BMG with its superior overall performance could penetrate a 6 mm Q235 plate at a speed of 1038 m/s, combining excellent mechanical properties and energy characteristics. This study contributes to the development of Zr-based BMGs as novel energetic structural materials.

17.
Toxicon ; 248: 108040, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39038664

RESUMEN

As a traditional tonic Chinese medicine, Polygonum multiflorum is widely used in clinical practice. However, with the deepening of modern pharmacological research, its drug toxicity, especially hepatotoxicity, has become increasingly prominent. Based on a large number of clinical and experimental evidence, it has been confirmed that Polygonum multiflorum and its main active ingredients such as anthraquinones and diphenylethylene glucoside can cause different degrees of hepatotoxicity. Further studies have shown that the toxicological mechanisms involved in the hepatotoxicity of different extracts and components of Polygonum multiflorum may include oxidative phosphorylation, bile acid excretion, different metabolic pathways, genetic and metabolic factors, immune homeostasis, etc. By sorting out and summarizing the literature related to hepatotoxicity of Polygonum multiflorum in recent years, this paper discussed the hepatotoxicity mechanism of Polygonum multiflorum and its main components and some contradictions in related reports.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fallopia multiflora , Fallopia multiflora/química , Humanos , Medicamentos Herbarios Chinos/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Antraquinonas/toxicidad , Medicina Tradicional China , Animales , Polygonum/química
18.
Nat Metab ; 6(8): 1601-1615, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39030389

RESUMEN

Dysbiosis of the gut microbiota has been implicated in the pathogenesis of metabolic syndrome (MetS) and may impair host metabolism through harmful metabolites. Here, we show that Desulfovibrio, an intestinal symbiont enriched in patients with MetS, suppresses the production of the gut hormone glucagon-like peptide 1 (GLP-1) through the production of hydrogen sulfide (H2S) in male mice. Desulfovibrio-derived H2S is found to inhibit mitochondrial respiration and induce the unfolded protein response in intestinal L cells, thereby hindering GLP-1 secretion and gene expression. Remarkably, blocking Desulfovibrio and H2S with an over-the-counter drug, bismuth subsalicylate, improves GLP-1 production and ameliorates diet-induced metabolic disorder in male mice. Together, our study uncovers that Desulfovibrio-derived H2S compromises GLP-1 production, shedding light on the gut-relayed mechanisms by which harmful microbiota-derived metabolites impair host metabolism in MetS and suggesting new possibilities for treating MetS.


Asunto(s)
Microbioma Gastrointestinal , Péptido 1 Similar al Glucagón , Sulfuro de Hidrógeno , Animales , Sulfuro de Hidrógeno/metabolismo , Masculino , Ratones , Péptido 1 Similar al Glucagón/metabolismo , Desulfovibrio/metabolismo , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Ratones Endogámicos C57BL
19.
J Colloid Interface Sci ; 674: 1092-1102, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39018938

RESUMEN

It is critical and challenging to develop highly active and low cost bifunctional electrocatalysts for the hydrogen/oxygen evolution reaction (HER/OER) in water electrolysis. Herein, we propose cerium-vanadium-based hollow nanopillar arrays supported on nickel foam (CeV-HNA/NF) as bifunctional HER/OER electrocatalysts, which are prepared by etching the V metal-organic framework with Ce salt and then pyrolyzing. Etching results in multidimensional optimizations of electrocatalysts, covering substantial oxygen vacancies, optimized electronic configurations, and an open-type structure of hollow nanopillar arrays, which contribute to accelerating the charge transfer rate, regulating the adsorption energy of H/O-containing reaction intermediates, and fully exposing the active sites. The reconstruction of the electrocatalyst is also accelerated by Ce doping, which results in highly active hydroxy vanadium oxide interfaces. Therefore, extremely low overpotentials of 170 and 240 mV under a current density of 100 mA cm-2 are achieved for the HER and OER under alkaline conditions, respectively, with long-term stability for 300 h. An electrolysis cell with CeV-HNA/NF as both the cathode and anode delivers a small voltage of 1.53 V to achieve water electrolysis under 10 mA cm-2, accompanied by superior durability for 150 h. This design provides an innovative way to develop advanced bifunctional electrocatalysts for overall water electrolysis.

20.
Front Cardiovasc Med ; 11: 1401143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911517

RESUMEN

Introduction: Arrhythmia is an important indication of underlying cardiovascular diseases (CVD) and is prevalent worldwide. Accurate diagnosis of arrhythmia is crucial for timely and effective treatment. Electrocardiogram (ECG) plays a key role in the diagnosis of arrhythmia. With the continuous development of deep learning and machine learning processes in the clinical field, ECG processing algorithms have significantly advanced the field with timely and accurate diagnosis of arrhythmia. Methods: In this study, we combined the wavelet time-frequency maps with the novel Swin Transformer deep learning model for the automatic detection of cardiac arrhythmias. In specific practice, we used the MIT-BIH arrhythmia dataset, and to improve the signal quality, we removed the high-frequency noise, artifacts, electromyographic noise and respiratory motion effects in the ECG signals by the wavelet thresholding method; we used the complex Morlet wavelet for the feature extraction, and plotted wavelet time-frequency maps to visualise the time-frequency information of the ECG; we introduced the Swin Transformer model for classification and achieve high classification accuracy of ECG signals through hierarchical construction and self attention mechanism, and combines windowed multi-head self-attention (W-MSA) and shifted window-based multi-head self-attention (SW-MSA) to comprehensively utilise the local and global information. Results: To enhance the confidence of the experimental results, we evaluated the performance using intra-patient and inter-patient paradigm analyses, and the model classification accuracies reached 99.34% and 98.37%, respectively, which are better than the currently available detection methods. Discussion: The results reveal that our proposed method is superior to currently available methods for detecting arrhythmia ECG. This provides a new idea for ECG based arrhythmia diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA