Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Res ; 28(1): 564, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053193

RESUMEN

OBJECTIVE: To explore the surgical techniques, advantages, and disadvantages of neuroendoscopic telovelar approach in the treatment of brainstem and fourth ventricle lesions. METHODS: The clinical data of 5 patients treated by neuroendoscopic telovelar approach from March 2020 to March 2022 were analyzed retrospectively. RESULTS: Among the 5 patients, there were 3 cavernous hemangiomas in pontine arm and 2 tumors in brainstem and fourth ventricle. All patients could successfully complete the operation, and 4 patients recovered well, other 1 patient discharged automatically for serious complications of other systems after the operation. CONCLUSION: The telovelar approach has gained popularity as a safe and effective strategy for lesions in fourth ventricular and brainstem. However, without removing the posterior arch of the atlas, it is difficult to enter the upper part of the fourth ventricle under a microscope. Transcranial neuroendoscopy can effectively compensate for the shortcomings of microscopy, whether used as an auxiliary measure for microsurgery or alone with proficient endoscopic techniques, it will provide greater application in minimally invasive surgery for fourth ventricle and brainstem lesions. By utilizing the excellent degree of freedom of transcranial neuroendoscopy, there is no need to open the posterior arch of the atlas, making the surgery more minimally invasive. However, the sample size of this study is small, and it was completed under the very mature neuroendoscopic technology of our team. Its general safety and practicality still require extensive clinical research validation.


Asunto(s)
Neuroendoscopía , Humanos , Neuroendoscopía/métodos , Cuarto Ventrículo/cirugía , Procedimientos Neuroquirúrgicos/efectos adversos , Estudios Retrospectivos , Tronco Encefálico/cirugía
2.
Heliyon ; 9(6): e16193, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37251467

RESUMEN

Introduction: Pure ventricular hemorrhage is often secondary to Moyamoya disease, rarely caused by rupture of ventricular aneurysm. The surgical treatment of the latter is very challenging. 3D Slicer reconstruction technology can accurately locate small intracranial lesions and combined with minimally invasive surgery with transcranial neuroendoscope is a new attempt to treat the above diseases. Case presentation: We report a case of pure intraventricular hemorrhage secondary to rupture of a distal segment aneurysm of the anterior choroidal artery. Brain computed tomography (CT) before admission showed pure ventricular hemorrhage, and brain CT angiography (CTA) before operation showed a distal segment aneurysm of the anterior choroidal artery. We used 3D Slicer reconstruction and precise location of the focus before the operation and used the minimally invasive surgery technique with transcranial neuroendoscope to completely remove the hematoma in the ventricle, and found the responsible aneurysm located in the ventricle. Conclusion: Pure intraventricular hemorrhage requires vigilance against the distal segment aneurysm of the anterior choroidal artery. At present, conventional microscopic craniotomy and intravascular interventional therapy have limitations, and 3D Slicer reconstruction and precise positioning technology combined with transcranial neuroendoscope minimally invasive surgery may be a good choice.

3.
Am J Transl Res ; 15(1): 175-183, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777826

RESUMEN

Long non-coding RNA taurine-upregulated gene 1 (TUG1) plays pivotal roles in angiogenesis, an important mechanism of neural repair after intracerebral hemorrhage (ICH). However, the role of TUG1 in angiogenesis following ICH is not clear. Therefore, in this study, we investigated the role and the underlying mechanism of TUG1 in neurologic impairment and cerebral angiogenesis following ICH. The ICH rat model was established and then rats were injected with TUG1-expressing plasmid (pcDNA-TUG1) or miR-26a mimic, a critical regulator of VEGF-mediated angiogenesis. We confirmed the overexpression of TUG1 and miR-26a by qRT-PCR. The neurological deficits of ICH rats were evaluated by modified neurological severity scores. The expression of angiogenesis markers VEGF and CD31 were examined by immunohistochemistry and western blot. The interaction between TUG1 and miR-26a was determined by luciferase reporter assay. Our results showed that ICH caused a marked upregulation of TUG1 and a significant downregulation of miR-26a. TUG1 overexpression led to the deterioration of neurologic function and inhibited cerebral angiogenesis in ICH rats. In contrast, overexpression of miR-26a alleviated the neurologic damage and promoted cerebral angiogenesis in ICH rats, but these could be attenuated by TUG1 overexpression. Furthermore, TUG1 directly bound to miR-26a and inhibited its expression. Importantly, TUG1 overexpression inhibited the expression of VEGF by targeting miR-26a. In conclusion, our results indicated that TUG1 aggravated ICH-mediated injury by suppressing angiogenesis by downregulating miR-26a. This suggests a rationale for targeting TUG1/miR-26a in the therapy of ICH.

4.
Oncol Rep ; 49(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36579671

RESUMEN

Following the publication of this article, an interested reader drew to the authors' attention that, in Fig. 1F on p. 2311 showing a representative high­grade glioma specimen, the data were either duplicated or overlapping with the data featured in Fig. 1D, which showed a low­grade glioma specimen. After having consulted their original data, the authors have realized that the data for Fig. 1D were inadvertently selected incorrectly. The corrected version of Fig. 1, now showing the correct data for the high­magnification high­grade glioma specimen in Fig. 1F, is shown on the next page. The authors sincerely apologize for the error that was introduced during the preparation of this figure, thank the Editor of Oncology Reports for granting them the opportunity to publish a Corrigendum, and are grateful to the reader for alerting them to this issue. The authors also regret any inconvenience that this mistake may have caused. [Oncology Reports 42: 2309-2322, 2019; DOI: 10.3892/or.2019.7343].

5.
Biomed Res Int ; 2022: 1037525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330459

RESUMEN

Objective: Angiogenesis is one of the therapeutic targets of cerebral infarction. Long noncoding RNAs (lncRNAs) can regulate the pathological process of angiogenesis following ischemic stroke. Taurine-upregulated gene 1 (TUG1), an lncRNA, is correlated to ischemic stroke. We intended to determine the effect of TUG1 on angiogenesis following an ischemic stroke. Materials and Methods: Middle cerebral artery occlusion (MCAO) was adopted to build a focal ischemic model of the rat brain, and pcDNA-TUG1 and miR-26a mimics were injected into rats. Neurological function was estimated through modified neurological severity scores. The volume of focal brain infarction was calculated through 2,3,5-triphenyltetrazolium chloride staining. The level of TUG1 and miR-26a was measured by PCR. The expression of vascular endothelial growth factor (VEGF) and CD31 was checked using immunohistochemistry and western blot. The correlation between miR-26a and TUG1 was verified through a luciferase reporter assay. Results: TUG1 increased noticeably while miR-26a was markedly reduced in MCAO rats. Overexpression of miR-26a improved neurological function recovery and enhanced cerebral angiogenesis in MCAO rats. TUG1 overexpression aggravated neurological deficits and suppressed cerebral angiogenesis in MCAO rats. Bioinformatics analysis revealed that miR-26a was one of the predicted targets of TUG1. Furthermore, TUG1 combined with miR-26a to regulate angiogenesis. TUG1 overexpression antagonized the role of miR-26a in neurological recovery and angiogenesis in MCAO rats. Conclusions: TUG1/miR-26a, which may act as a regulatory axis in angiogenesis following ischemic stroke, can be considered a potential target for cerebral infarction therapy.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , ARN Largo no Codificante , Ratas , Animales , MicroARNs/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Taurina , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neovascularización Patológica/genética , Infarto de la Arteria Cerebral Media/genética
6.
J R Soc Interface ; 19(191): 20220298, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35702860

RESUMEN

The growth and development of biological tissues and organs strongly depend on the requirements of their multiple functions. Plant veins yield efficient nutrient transport and withstand various external loads. Victoria cruziana, a tropical species of the Nymphaeaceae family of water lilies, has evolved a network of three-dimensional and rugged veins, which yields a superior load-bearing capacity. However, it remains elusive how biological and mechanical factors affect their unique vein layout. In this paper, we propose a multi-functional and large-scale topology optimization method to investigate the morphomechanics of Victoria cruziana veins, which optimizes both the structural stiffness and nutrient transport efficiency. Our results suggest that increasing the branching order of radial veins improves the efficiency of nutrient delivery, and the gradient variation of circumferential vein sizes significantly contributes to the stiffness of the leaf. In the present method, we also consider the optimization of the wall thickness and the maximum layout distance of circumferential veins. Furthermore, biomimetic leaves are fabricated by using the three-dimensional printing technique to verify our theoretical findings. This work not only gains insights into the morphomechanics of Victoria cruziana veins, but also helps the design of, for example, rib-reinforced shells, slabs and dome skeletons.


Asunto(s)
Nymphaeaceae , Hojas de la Planta , Plantas , Soporte de Peso
7.
Front Immunol ; 12: 730289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659216

RESUMEN

Gliomas are the most common primary malignant tumor in adults' central nervous system. While current research on glioma treatment is advancing rapidly, there is still no breakthrough in long-term treatment. Abnormalities in the immune regulatory mechanism in the tumor microenvironment are essential to tumor cell survival. The alteration of amino acid metabolism is considered a sign of tumor cells, significantly impacting tumor cells and immune regulation mechanisms in the tumor microenvironment. Despite the fact that the metabolism of tryptophan in tumors is currently discussed in the literature, we herein focused on reviewing the immune regulation of tryptophan metabolism in the tumor microenvironment of gliomas and analyzed possible immune targets. The objective is to identify potential targets for the treatment of glioma and improve the efficiency of immunotherapy.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Triptófano/metabolismo , Microambiente Tumoral , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Diferenciación Celular , Glioma/tratamiento farmacológico , Glioma/inmunología , Glioma/patología , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Triptófano/inmunología
8.
Front Neurol ; 12: 683051, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512505

RESUMEN

Background: Aneurysmal subarachnoid hemorrhage (aSAH) leads to severe disability and functional dependence. However, no reliable method exists to predict the clinical prognosis after aSAH. Thus, this study aimed to develop a web-based dynamic nomogram to precisely evaluate the risk of poor outcomes in patients with aSAH. Methods: Clinical patient data were retrospectively analyzed at two medical centers. One center with 126 patients was used to develop the model. Least absolute shrinkage and selection operator (LASSO) analysis was used to select the optimal variables. Multivariable logistic regression was applied to identify independent prognostic factors and construct a nomogram based on the selected variables. The C-index and Hosmer-Lemeshow p-value and Brier score was used to reflect the discrimination and calibration capacities of the model. Receiver operating characteristic curve and calibration curve (1,000 bootstrap resamples) were generated for internal validation, while another center with 84 patients was used to validate the model externally. Decision curve analysis (DCA) and clinical impact curves (CICs) were used to evaluate the clinical usefulness of the nomogram. Results: Unfavorable prognosis was observed in 46 (37%) patients in the training cohort and 24 (29%) patients in the external validation cohort. The independent prognostic factors of the nomogram, including neutrophil-to-lymphocyte ratio (NLR) (p = 0.005), World Federation of Neurosurgical Societies (WFNS) grade (p = 0.002), and delayed cerebral ischemia (DCI) (p = 0.0003), were identified using LASSO and multivariable logistic regression. A dynamic nomogram (https://hu-ping.shinyapps.io/DynNomapp/) was developed. The nomogram model demonstrated excellent discrimination, with a bias-corrected C-index of 0.85, and calibration capacities (Hosmer-Lemeshow p-value, 0.412; Brier score, 0.12) in the training cohort. Application of the model to the external validation cohort yielded a C-index of 0.84 and a Brier score of 0.13. Both DCA and CIC showed a superior overall net benefit over the entire range of threshold probabilities. Conclusion: This study identified that NLR on admission, WFNS grade, and DCI independently predicted unfavorable prognosis in patients with aSAH. These factors were used to develop a web-based dynamic nomogram application to calculate the precise probability of a poor patient outcome. This tool will benefit personalized treatment and patient management and help neurosurgeons make better clinical decisions.

9.
J Cancer ; 12(9): 2756-2767, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854635

RESUMEN

Serum amyloid A1 (SAA1) is an inflammatory associated high-density lipoprotein. And It is also considered as a predictor and prognostic marker of cancer risk. However, its role and mechanisms in glioblastoma (GBM) still unclear. In this study, we validate that SAA1 is up-regulated in GBM, and its high expression predicts poor prognosis. SAA1 knockdown promotes the apoptosis of GBM cell. Mechanistically, SAA1 knockdown can inhibit serine/threonine protein kinase B (AKT) phosphorylation, thereby regulating the expression of apoptosis-related proteins such as Bcl2 and Bax, leading to GBM cell death. Moreover, Gliomas with low SAA1 expression have increased sensitivity to Temozolomide (TMZ). Low SAA1 expression segregated glioma patients who were treated with Temozolomide (TMZ) or with high MGMT promoter methylation into survival groups in TCGA and CGGA dataset. Our study strongly suggested that SAA1 was a regulator of cells apoptosis and acted not only as a prognostic marker but also a novel biomarker of sensitivity of glioma to TMZ.

10.
Pathol Res Pract ; 222: 153433, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33862563

RESUMEN

Increasing literature reported that circRNAs play vital roles in the occurrence and progression of GBM and regulate GBM cell proliferation, metastases, and chemosensitivity. However, the expression pattern and function of circRNAs in GBM still need further studies. In our work, hsa_circ_0072309 was remarkably downregulated in GBM. Hsa_circ_0072309 inhibits proliferation and invasion of glioblastoma and affects cytoskeletal of GBM cells. Moreover, we found that the function of hsa_circ_0,072,309 in GBM was associated with HSP27, which was reported to be an important regulator of cell proliferation, invasion and cytoskeletal. Our study provides a novel view of hsa_circ_0072309 in GBM cell proliferation and invasion, indicating that hsa_circ_0072309 may act as a potential therapeutic target for GBM comprehensive treatment.


Asunto(s)
Proliferación Celular/fisiología , Glioblastoma/metabolismo , Invasividad Neoplásica/genética , ARN Circular/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , MicroARNs/metabolismo
11.
Front Oncol ; 11: 607150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777749

RESUMEN

Liquid biopsy has entered clinical applications for several cancers, including metastatic breast, prostate, and colorectal cancer for CTC enumeration and NSCLC for EGFR mutations in ctDNA, and has improved the individualized treatment of many cancers, but relatively little progress has been made in validating circulating biomarkers for brain malignancies. So far, data on circulating tumor cells about glioma are limited, the application of circulating tumor cells as biomarker for glioma patients has only just begun. This article reviews the research status and application prospects of circulating tumor cells in gliomas. Several detection methods and research results of circulating tumor cells about clinical research in gliomas are briefly discussed. The wide application prospect of circulating tumor cells in glioma deserves further exploration, and the research on more sensitive and convenient detection methods is necessary.

13.
Aging (Albany NY) ; 12(21): 22122-22138, 2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-33186124

RESUMEN

Glioma is the most common malignant tumor in the central nervous system. Evidence shows that clinical efficacy of immunotherapy is closely related to the tumor microenvironment. This study aims to establish a microenvironment-related genes (MRGs) model to predict the prognosis of patients with Grade II/III gliomas. Gene expression profile and clinical data of 459 patients with Grade II/III gliomas were extracted from The Cancer Genome Atlas. Then according to the immune/stromal scores generated by the ESTIMATE algorithm, the patients were scored one by one. Weighted gene co-expression network analysis (WGCNA) was used to construct a gene co-expression network to identify potential biomarkers for predicting the prognosis of patients. When adjusting clinical features including age, histology, grading, IDH status, we found that these features were independently associated with survival. The predicted value of the prognostic model was then verified in 440 samples in CGGA part B dataset and 182 samples in CGGA part C dataset by univariate and multivariate cox analysis. The clinical samples of 10 patients further confirmed our signature. Our findings suggested the eight-MRGs signature identified in this study are valuable prognostic predictors for patients with Grade II/III glioma.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Microambiente Tumoral/genética , Algoritmos , Biomarcadores de Tumor/genética , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Pronóstico , Transcriptoma
14.
J Exp Clin Cancer Res ; 39(1): 174, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867814

RESUMEN

BACKGROUND: Inhibition of p38 MAPK signalling leads to glioblastoma multiform (GBM) tumourigenesis. Nevertheless, the molecular mechanism that induces p38 MAPK signalling pathway silencing during GBM genesis has yet to be determined. Identifying new factors that can regulate p38 MAPK signalling is important for tumour treatment. METHODS: Flow cytometry, TUNEL assays, immunofluorescence, JC-1 assays, and western blot analyses were used to detect the apoptosis of GBM cells. The specific methods used to detect autophagy levels in GBM cells were western blot analysis, LC3B protein immunofluorescence, LC3B puncta assays and transmission electron microscopy. The functions of these critical molecules were further confirmed in vivo by intracranial xenografts in nude mice. Tumour tissue samples and clinical information were used to identify the correlation between RND2 and p62 and LC3B expression, survival time of patients, and tumour volumes in clinical patients. RESULTS: By summarizing data from the TCGA database, we found that expression of the small GTPase RND2 was significantly increased in human glioblastomas. Our study demonstrated that RND2 functions as an endogenous repressor of the p38 MAPK phosphorylation complex. RND2 physically interacted with p38 and decreased p38 phosphorylation, thereby inhibiting p38 MAPK signalling activities. The forced expression of RND2 repressed p38 MAPK signalling, which inhibited glioblastoma cell autophagy and apoptosis in vitro and induced tumour growth in the xenografted mice in vivo. By contrast, the downregulation of RND2 enhanced p38 MAPK signalling activities and promoted glioma cell autophagy and apoptosis. The inhibition of p38 phosphorylation abolished RND2 deficiency-mediated GBM cell autophagy and apoptosis. Most importantly, our study found that RND2 expression was inversely correlated with patient survival time and was positively correlated with tumour size. CONCLUSIONS: Our findings revealed a new function for RND2 in GBM cell death and offered mechanistic insights into the inhibitory effects of RND2 with regard to the regulation of p38 MAPK activation.


Asunto(s)
Apoptosis , Autofagia , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Biomarcadores de Tumor/genética , Proliferación Celular , Femenino , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Fosforilación , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas de Unión al GTP rho/genética
15.
Front Pharmacol ; 11: 1102, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848734

RESUMEN

Glioblastoma multiforme (GBM) is the most common intracranial malignancy in adults with the highest degree of malignancy and mortality. Due to its nature of diffuse invasiveness and high migration, GBM lacks an effective treatment strategy and is associated with poor prognosis. SC66 is a novel AKT inhibitor that has been reported to exert antiproliferative activity in many types of cancer cells. However, it remains unclear whether SC66 has antitumor effects in GBM. In this study, we found SC66 obviously suppressed U87 and U251 cell proliferation and EMT- mediated cell migration and invasion. Moreover, SC66 induced GBM cells apoptosis and arrested cell cycle in G0/G1 phase. Furthermore, SC66 also downregulated AKT signaling pathway in a concentration dependent manner. We also found the level of ß-catenin nuclear translocation was prominently downregulated after SC66 treatment. Meanwhile, TCF/LEF luciferase report assay indicated that the activity of TCF/LEF was remarkably suppressed. Elevating ß-catenin activity by using IM12 rescued SC66 inhibition-mediated GBM cell proliferation and metastasis. In addition, SC66 showed significantly suppressed the tumorigenicity compared to the control group in the xenograft mouse model. In conclusion, our study demonstrated that SC66 exerts prominently antitumor efficiency in GBM cells in vivo and in vitro by downregulated AKT/ß-catenin pathway.

16.
Med Sci Monit ; 26: e924054, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32843610

RESUMEN

BACKGROUND Gliomas are the most common primary tumors of the brain and spinal cord. The tumor microenvironment (TME) is the cellular environment in which tumors exist. This study aimed to identify the role of the TME and the effects of genes involved in the TME of malignant glioma. MATERIAL AND METHODS The ESTIMATE algorithms in the R package were used to calculate the immune and stromal scores of samples in the TCGA and GSE4290 datasets. The associations of stromal and immune scores with clinicopathological characteristics and overall survival of malignant glioma patients were assessed by analysis of variance and Kaplan-Meier analysis. Differentially expressed genes (DEGs) were obtained through the median immune and stromal score using the R package "limma". Functional enrichment analysis and the PPI network MCODE were used to analyze DEGs. RESULTS Increased immune and stromal scores were closely related with advanced glioma grade and poor prognosis (all P<0.01). In total, 558 DEGs were found and most were related to tumor prognosis. Functional enrichment analysis showed that DEGs were associated with cell-matrix regulation and immune response. Four hub modules related to tumor angiogenesis, collagen formation, and immune response were found and analyzed. Previously overlooked microenvironment-related genes such as LAMB1, FN1, ACTN1, TRIM, SERPINH1, CYBA, LAIR1, and LILRB2 showed prognostic values in malignant glioma patients. CONCLUSIONS The glioma stromal/immune scores are closely related to glioma grade, histology, and survival time. Some glioma microenvironment-related genes including LAMB1, FN1, ACTN1, TRIM6, SERPINH1, CYBA, LAIR1, and LILRB2 show prognostic values in malignant gliomas and serve as potential biomarkers.


Asunto(s)
Neoplasias Encefálicas/genética , Biología Computacional , Glioma/genética , Microambiente Tumoral , Algoritmos , Biomarcadores de Tumor/genética , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica/métodos , Humanos , Pronóstico
17.
Biomed Res Int ; 2020: 9716720, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695826

RESUMEN

BACKGROUND: LUZP2 is a protein limitedly expressed in the brain and spinal cord, while there are few studies on it in brain tumors. Low-grade glioma (LGG) is one of the most common brain tumors. However, the biological behavior of LGG is not very clear at present. This study was aimed at exploring the role of LUZP2 in LGG. METHODS: By data mining in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), the expression, clinical characteristics, and potential regulatory mechanism of LUZP2 in LGG were assessed. The regulatory miRNAs of LUZP2 were predicted using miRDB, TargetScan, and miRTarBase. Meanwhile, the potential biological function of coexpressed genes was investigated by GO and KEGG analyses. RESULTS: LUZP2 expression was downregulated with the increase of tumor grade (p < 0.05). Low LUZP2 expression independently predicted poor OS in LGG in TCGA cohort and the CGGA part B and part C cohorts (all p < 0.001). Additionally, LUZP2 was targeted by miR-142-5p according to 2 prediction databases and 1 validated database, which was negatively related to LUZP2 mRNA expression (p < 0.001). Kaplan-Meier analyses demonstrated that low miR-142-5p expression was significantly associated with poor OS (p < 0.001). Furthermore, coexpression genes of LUZP2 were significantly involved in nervous system development and metabolic pathways. CONCLUSIONS: LUZP2 may be crucial for nervous system extracellular matrix development and serve as an important clinical biomarker for LGG patients. miR-142-5p upregulation could be the upstream regulator that contributed to LUZP2 downregulation.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Proteínas de Unión al ADN/metabolismo , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Estimación de Kaplan-Meier , MicroARNs/genética , MicroARNs/metabolismo , Clasificación del Tumor , Modelos de Riesgos Proporcionales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
18.
BMC Plant Biol ; 20(1): 85, 2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32087672

RESUMEN

BACKGROUND: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. RESULTS: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the growth of stylo root was enhanced, which was attributed to the up-regulation of expansin genes participating in root growth. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulations were identified in stylo roots response to P deficiency, which mainly included flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots subjected to low P stress. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were increased in P-deficient stylo roots. Furthermore, the qRT-PCR analysis showed that a set of genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundances of phenolic acids and phenylamides were significantly increased in stylo roots during P deficiency. The increased accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. CONCLUSIONS: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and increasing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo roots to P deficiency.


Asunto(s)
Fabaceae/metabolismo , Metaboloma , Compuestos de Fósforo/metabolismo , Fósforo/deficiencia , Raíces de Plantas/metabolismo , Fabaceae/genética , Expresión Génica , Genes de Plantas , Suelo/química
19.
Oncol Rep ; 42(6): 2309-2322, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31578594

RESUMEN

Glioma is the most common and aggressive tumor type of the central nervous system and is associated with poor prognosis. To date, novel emerging immunotherapies have significantly improved outcomes for patients with various cancer types. Human endogenous retrovirus­H long terminal repeat­associating protein 2 (HHLA2), a newly discovered immune checkpoint molecule, has demonstrated its potential as a novel therapeutic target. Therefore, the present study aimed to investigate the clinical prognostic value of HHLA2 in gliomas and its mechanistic role. A systematic review of datasets from The Cancer Genome Atlas was performed. The RNA­seq data of a total of 669 cases were analyzed and the biological function of HHLA2 was predicted by Gene Ontology (GO) and pathway enrichment analysis. Immunohistochemistry labelling images for HHLA2 was obtained from the Human Protein Atlas. xCell was used to comprehensively analyze the model of tumor­infiltrating immune cell in glioma. The Cox proportional hazards regression model was used to predict outcomes for glioma patients. The results revealed that the expression levels of HHLA2 were significantly lower in high­grade glioma, as well as glioma with wild­type isocitrate dehydrogenase, no deletion of 1p/19q and telomerase reverse transcriptase promoter mutation. Receiver operating characteristic analysis revealed that HHLA2 was a predictor of the neural subtype. The tumor­infiltrating immune cell model indicated that HHLA2 was negatively associated with tumor­associated macrophages. GO analysis and pathway enrichment analysis revealed that HHLA2­associated genes were functionally involved in inhibition of neoplasia­associated processes. HHLA2 was significantly negatively correlated with certain genes, including interleukin­10, transforming growth factor­ß, vascular endothelial growth factor and δ­like canonical Notch ligand 4, and other immune checkpoint molecules, including programmed cell death 1, lymphocyte activating 3 and CD276. Survival analysis indicated that high expression of HHLA2 predicted a favorable prognosis. In conclusion, the present study revealed that upregulation of HHLA2 is significantly associated with a favorable outcome for patients with glioma. Targeting HHLA2 as an immune stimulator may become a valuable approach for the treatment of glioma in clinical practice.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Inmunoglobulinas/metabolismo , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Glioma/genética , Glioma/metabolismo , Humanos , Inmunoglobulinas/genética , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia
20.
J Agric Food Chem ; 67(25): 7167-7173, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31240926

RESUMEN

An improved method for solid-phase extraction (SPE)-liquid chromatography-tandem mass spectrometry was developed to analyze eight monoalkyl phthalate esters (MPEs) in eight different kinds of porcine tissues. The tissue samples were processed using enzymatic deconjugation with ß-glucuronidase, followed by SPE with Oasis MAX cartridges. A pentafluorophenyl column was first used to solve the coeluting issues of MPE isomers. The limits of detection and recoveries were 0.01-0.6 ng/g and 62.5-123.7%, respectively. The intra- and interday precisions were less than 7.1 and 9.4%, respectively. The robust method was successfully applied for the investigation of MPEs in various porcine tissue samples collected from markets in Beijing, China. The occurrence of MPEs with total concentrations of 48.0-108 ng/g was detected, and monoethylhexyl phthalate was the predominant MPE (accounting for 30-57%) in all of the porcine tissue samples. The results will be helpful in assessing the potential risks of diets that include pork.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ésteres/química , Ésteres/aislamiento & purificación , Músculos/química , Ácidos Ftálicos/química , Ácidos Ftálicos/aislamiento & purificación , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Animales , China , Contaminación de Alimentos/análisis , Carne/análisis , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...