Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38365268

RESUMEN

Cleft lip/palate is a common orofacial malformation that often leads to speech/language difficulties as well as developmental delays in affected children, despite surgical repair. Our understanding of brain development in these children is limited. This study aimed to analyze prenatal brain development in fetuses with cleft lip/palate and controls. We examined in utero MRIs of 30 controls and 42 cleft lip/palate fetal cases and measured regional brain volumes. Cleft lip/palate was categorized into groups A (cleft lip or alveolus) and B (any combination of clefts involving the primary and secondary palates). Using a repeated-measures regression model with relative brain hemisphere volumes (%), and after adjusting for multiple comparisons, we did not identify significant differences in regional brain growth between group A and controls. Group B clefts had significantly slower weekly cerebellar growth compared with controls. We also observed divergent brain growth in transient brain structures (cortical plate, subplate, ganglionic eminence) within group B clefts, depending on severity (unilateral or bilateral) and defect location (hemisphere ipsilateral or contralateral to the defect). Further research is needed to explore the association between regional fetal brain growth and cleft lip/palate severity, with the potential to inform early neurodevelopmental biomarkers and personalized diagnostics.


Asunto(s)
Labio Leporino , Fisura del Paladar , Femenino , Niño , Embarazo , Humanos , Labio Leporino/diagnóstico por imagen , Labio Leporino/cirugía , Fisura del Paladar/diagnóstico por imagen , Fisura del Paladar/cirugía , Encéfalo/diagnóstico por imagen , Encéfalo/anomalías , Feto
2.
Cereb Cortex ; 33(21): 10793-10801, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37697904

RESUMEN

Non-syndromic, isolated musculoskeletal birth defects (niMSBDs) are among the leading causes of pediatric hospitalization. However, little is known about brain development in niMSBDs. Our study aimed to characterize prenatal brain development in fetuses with niMSBDs and identify altered brain regions compared to controls. We retrospectively analyzed in vivo structural T2-weighted MRIs of 99 fetuses (48 controls and 51 niMSBDs cases). For each group (19-31 and >31 gestational weeks (GW)), we conducted repeated-measures regression analysis with relative regional volume (% brain hemisphere) as a dependent variable (adjusted for age, side, and interactions). Between 19 and 31GW, fetuses with niMSBDs had a significantly (P < 0.001) smaller relative volume of the intermediate zone (-22.9 ± 3.2%) and cerebellum (-16.1 ± 3.5%,) and a larger relative volume of proliferative zones (38.3 ± 7.2%), the ganglionic eminence (34.8 ± 7.3%), and the ventricles (35.8 ± 8.0%). Between 32 and 37 GW, compared to the controls, niMSBDs showed significantly smaller volumes of central regions (-9.1 ± 2.1%) and larger volumes of the cortical plate. Our results suggest there is altered brain development in fetuses with niMSBDs compared to controls (13.1 ± 4.2%). Further basic and translational neuroscience research is needed to better visualize these differences and to characterize the altered development in fetuses with specific niMSBDs.


Asunto(s)
Encéfalo , Cerebro , Embarazo , Femenino , Humanos , Niño , Estudios Retrospectivos , Feto , Desarrollo Fetal , Imagen por Resonancia Magnética/métodos , Edad Gestacional
3.
Cereb Cortex ; 33(4): 1130-1139, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35349640

RESUMEN

Mild isolated fetal ventriculomegaly (iFVM) is the most common abnormality of the fetal central nervous system. It is characterized by enlargement of one or both of the lateral ventricles (defined as ventricular width greater than 10 mm, but less than 12 mm). Despite its high prevalence, the pathophysiology of iFVM during fetal brain development and the neurobiological substrate beyond ventricular enlargement remain unexplored. In this work, we aimed to establish the relationships between the structural development of transient fetal brain zones/compartments and increased cerebrospinal fluid volume. For this purpose, we used in vivo structural T2-weighted magnetic resonance imaging of 89 fetuses (48 controls and 41 cases with iFVM). Our results indicate abnormal development of transient zones/compartments belonging to both hemispheres (i.e. on the side with and also on the contralateral side without a dilated ventricle) in fetuses with iFVM. Specifically, compared to controls, we observed enlargement of proliferative zones and overgrowth of the cortical plate in iFVM with associated reduction of volumes of central structures, subplate, and fetal white matter. These results indicate that enlarged lateral ventricles might be linked to the development of transient fetal zones and that global brain development should be taken into consideration when evaluating iFVM.


Asunto(s)
Hidrocefalia , Imagen por Resonancia Magnética , Embarazo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Ultrasonografía Prenatal/métodos , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/complicaciones , Hidrocefalia/patología , Encéfalo/patología , Feto
4.
Cereb Cortex ; 31(8): 3610-3621, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33836056

RESUMEN

The relationship between structural changes of the cerebral cortex revealed by Magnetic Resonance Imaging (MRI) and gene expression in the human fetal brain has not been explored. In this study, we aimed to test the hypothesis that relative regional thickness (a measure of cortical evolving organization) of fetal cortical compartments (cortical plate [CP] and subplate [SP]) is associated with expression levels of genes with known cortical phenotype. Mean regional SP/CP thickness ratios across age measured on in utero MRI of 25 healthy fetuses (20-33 gestational weeks [GWs]) were correlated with publicly available regional gene expression levels (23-24 GW fetuses). Larger SP/CP thickness ratios (more pronounced cortical evolving organization) was found in perisylvian regions. Furthermore, we found a significant association between SP/CP thickness ratio and expression levels of the FLNA gene (mutated in periventricular heterotopia, congenital heart disease, and vascular malformations). Further work is needed to identify early MRI biomarkers of gene expression that lead to abnormal cortical development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/embriología , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/embriología , Adulto , Encéfalo/diagnóstico por imagen , Corteza Cerebral/anomalías , Femenino , Feto/diagnóstico por imagen , Feto/metabolismo , Filaminas/genética , Expresión Génica/genética , Expresión Génica/fisiología , Edad Gestacional , Cabeza , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/metabolismo , Embarazo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transcriptoma
5.
Med Image Anal ; 70: 101972, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33677261

RESUMEN

Large, open-source datasets, such as the Human Connectome Project and the Autism Brain Imaging Data Exchange, have spurred the development of new and increasingly powerful machine learning approaches for brain connectomics. However, one key question remains: are we capturing biologically relevant and generalizable information about the brain, or are we simply overfitting to the data? To answer this, we organized a scientific challenge, the Connectomics in NeuroImaging Transfer Learning Challenge (CNI-TLC), held in conjunction with MICCAI 2019. CNI-TLC included two classification tasks: (1) diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD) within a pre-adolescent cohort; and (2) transference of the ADHD model to a related cohort of Autism Spectrum Disorder (ASD) patients with an ADHD comorbidity. In total, 240 resting-state fMRI (rsfMRI) time series averaged according to three standard parcellation atlases, along with clinical diagnosis, were released for training and validation (120 neurotypical controls and 120 ADHD). We also provided Challenge participants with demographic information of age, sex, IQ, and handedness. The second set of 100 subjects (50 neurotypical controls, 25 ADHD, and 25 ASD with ADHD comorbidity) was used for testing. Classification methodologies were submitted in a standardized format as containerized Docker images through ChRIS, an open-source image analysis platform. Utilizing an inclusive approach, we ranked the methods based on 16 metrics: accuracy, area under the curve, F1-score, false discovery rate, false negative rate, false omission rate, false positive rate, geometric mean, informedness, markedness, Matthew's correlation coefficient, negative predictive value, optimized precision, precision, sensitivity, and specificity. The final rank was calculated using the rank product for each participant across all measures. Furthermore, we assessed the calibration curves of each methodology. Five participants submitted their method for evaluation, with one outperforming all other methods in both ADHD and ASD classification. However, further improvements are still needed to reach the clinical translation of functional connectomics. We have kept the CNI-TLC open as a publicly available resource for developing and validating new classification methodologies in the field of connectomics.


Asunto(s)
Trastorno del Espectro Autista , Conectoma , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Neuroimagen
6.
Cereb Cortex ; 30(8): 4438-4453, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32147720

RESUMEN

The regional specification of the cerebral cortex can be described by protomap and protocortex hypotheses. The protomap hypothesis suggests that the regional destiny of cortical neurons and the relative size of the cortical area are genetically determined early during embryonic development. The protocortex hypothesis suggests that the regional growth rate is predominantly shaped by external influences. In order to determine regional volumes of cortical compartments (cortical plate (CP) or subplate (SP)) and estimate their growth rates, we acquired T2-weighted in utero MRIs of 40 healthy fetuses and grouped them into early (<25.5 GW), mid- (25.5-31.6 GW), and late (>31.6 GW) prenatal periods. MRIs were segmented into CP and SP and further parcellated into 22 gyral regions. No significant difference was found between periods in regional volume fractions of the CP or SP. However, during the early and mid-prenatal periods, we found significant differences in relative growth rates (% increase per GW) between regions of cortical compartments. Thus, the relative size of these regions are most likely conserved and determined early during development whereas more subtle growth differences between regions are fine-tuned later, during periods of peak thalamocortical growth. This is in agreement with both the protomap and protocortex hypothesis.


Asunto(s)
Corteza Cerebral/embriología , Desarrollo Fetal , Neurogénesis , Femenino , Feto , Humanos , Imagen por Resonancia Magnética , Masculino , Embarazo
7.
Cereb Cortex ; 30(3): 1752-1767, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31602456

RESUMEN

Structural asymmetries and sexual dimorphism of the human cerebral cortex have been identified in newborns, infants, children, adolescents, and adults. Some of these findings were linked with cognitive and neuropsychiatric disorders, which have roots in altered prenatal brain development. However, little is known about structural asymmetries or sexual dimorphism of transient fetal compartments that arise in utero. Thus, we aimed to identify structural asymmetries and sexual dimorphism in the volume of transient fetal compartments (cortical plate [CP] and subplate [SP]) across 22 regions. For this purpose, we used in vivo structural T2-weighted MRIs of 42 healthy fetuses (16.43-36.86 gestational weeks old, 15 females). We found significant leftward asymmetry in the volume of the CP and SP in the inferior frontal gyrus. The orbitofrontal cortex showed significant rightward asymmetry in the volume of CP merged with SP. Males had significantly larger volumes in regions belonging to limbic, occipital, and frontal lobes, which were driven by a significantly larger SP. Lastly, we did not observe sexual dimorphism in the growth trajectories of the CP or SP. In conclusion, these results support the hypothesis that structural asymmetries and sexual dimorphism in relative volumes of cortical regions are present during prenatal brain development.


Asunto(s)
Mapeo Encefálico , Encéfalo/crecimiento & desarrollo , Imagen por Resonancia Magnética , Caracteres Sexuales , Encéfalo/diagnóstico por imagen , Feto/diagnóstico por imagen , Lóbulo Frontal/diagnóstico por imagen , Humanos , Lactante , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...