Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Sci Adv ; 10(29): eadk1817, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39018390

RESUMEN

Noninvasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent advances in diffusion magnetic resonance imaging enabled in vivo examination of tissue microstructures well beyond the imaging resolution. Here, we proposed to use diffusion time-dependent diffusion kurtosis imaging (tDKI) to simultaneously assess cellular morphology and transmembrane permeability in hypoxic-ischemic (HI) brain injury. Through numerical simulations and organoid imaging, we demonstrated the feasibility of capturing effective size and permeability changes using tDKI. In vivo MRI of HI-injured mouse brains detected a shift of the tDKI peak to longer diffusion times, suggesting swelling of the cellular processes. Furthermore, we observed a faster decrease of the tDKI tail, reflecting increased transmembrane permeability associated with up-regulated water exchange or necrosis. Such information, unavailable from a single diffusion time, can predict salvageable tissues. Preliminary applications of tDKI in patients with ischemic stroke suggested increased transmembrane permeability in stroke regions, illustrating tDKI's potential for detecting pathological changes in the clinics.


Asunto(s)
Isquemia Encefálica , Imagen de Difusión por Resonancia Magnética , Animales , Imagen de Difusión por Resonancia Magnética/métodos , Ratones , Humanos , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/patología , Isquemia Encefálica/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Masculino
2.
bioRxiv ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39026865

RESUMEN

The capacity of the brain to compensate for insults during development depends on the type of cell loss, whereas the consequences of genetic mutations in the same neurons are difficult to predict. We reveal powerful compensation from outside the cerebellum when the excitatory cerebellar output neurons are ablated embryonically and demonstrate that the minimum requirement for these neurons is for motor coordination and not learning and social behaviors. In contrast, loss of the homeobox transcription factors Engrailed1/2 (EN1/2) in the cerebellar excitatory lineage leads to additional deficits in adult learning and spatial working memory, despite half of the excitatory output neurons being intact. Diffusion MRI indicates increased thalamo-cortico-striatal connectivity in En1/2 mutants, showing that the remaining excitatory neurons lacking En1/2 exert adverse effects on extracerebellar circuits regulating motor learning and select non-motor behaviors. Thus, an absence of cerebellar output neurons is less disruptive than having cerebellar genetic mutations.

3.
Biol Sex Differ ; 15(1): 39, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715106

RESUMEN

BACKGROUND: Early life adversity impairs hippocampal development and function across diverse species. While initial evidence indicated potential variations between males and females, further research is required to validate these observations and better understand the underlying mechanisms contributing to these sex differences. Furthermore, most of the preclinical work in rodents was performed in adult males, with only few studies examining sex differences during adolescence when such differences appear more pronounced. To address these concerns, we investigated the impact of limited bedding (LB), a mouse model of early adversity, on hippocampal development in prepubescent and adolescent male and female mice. METHODS: RNA sequencing, confocal microscopy, and electron microscopy were used to evaluate the impact of LB and sex on hippocampal development in prepubescent postnatal day 17 (P17) mice. Additional studies were conducted on adolescent mice aged P29-36, which included contextual fear conditioning, retrograde tracing, and ex vivo diffusion magnetic resonance imaging (dMRI). RESULTS: More severe deficits in axonal innervation and myelination were found in the perforant pathway of prepubescent and adolescent LB males compared to LB female littermates. These sex differences were due to a failure of reelin-positive neurons located in the lateral entorhinal cortex (LEC) to innervate the dorsal hippocampus via the perforant pathway in males, but not LB females, and were strongly correlated with deficits in contextual fear conditioning. CONCLUSIONS: LB impairs the capacity of reelin-positive cells located in the LEC to project and innervate the dorsal hippocampus in LB males but not female LB littermates. Given the critical role that these projections play in supporting normal hippocampal function, a failure to establish proper connectivity between the LEC and the dorsal hippocampus provides a compelling and novel mechanism to explain the more severe deficits in myelination and contextual freezing found in adolescent LB males.


Childhood adversity, such as severe deprivation and neglect, leads to structural changes in human brain development that are associated with learning deficits and behavioral difficulties. Some of the most consistent findings in individuals exposed to childhood adversity are reduced hippocampal volume and abnormal hippocampal function. This is important because the hippocampus is necessary for learning and memory, and it plays a crucial role in depression and anxiety. Although initial studies suggested more pronounced hippocampal deficits in men, additional research is needed to confirm these findings and to elucidate the mechanisms responsible for these sex differences. We found that male and female mice exposed to early impoverishment and deprivation exhibit similar structural changes to those observed in deprived children. Interestingly, adolescent male mice, but not females, display severe deficits in their ability to freeze when placed back in a box where they were previously shocked. The ability to associate "shock/danger" with a "box/place" is referred to as contextual fear conditioning and requires normal connections between the entorhinal cortex and the hippocampus. We found that these connections did not form properly in male mice exposed to impoverished conditions, but they were only minimally affected in females. These findings appear to explain why exposure to impoverished conditions impairs contextual fear conditioning in male mice but not in female mice. Additional work is needed to determine whether similar sex-specific changes in these connections are also observed in adolescents exposed to neglect and deprivation.


Asunto(s)
Hipocampo , Memoria , Ratones Endogámicos C57BL , Vía Perforante , Proteína Reelina , Caracteres Sexuales , Animales , Masculino , Femenino , Hipocampo/metabolismo , Miedo , Ratones , Estrés Psicológico
4.
J Magn Reson Imaging ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587279

RESUMEN

BACKGROUND: The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP. PURPOSE: To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels. STUDY TYPE: Prospective. SUBJECTS: Forty-nine subjects without neurological disorders (age: 21-80 years; 42 ± 17 years; 20 females). FIELD STRENGTH/SEQUENCE: 7-T with 2D and 3D T2* GRE, 3D MPRAGE T1, 2D TSE T2, and 2D FLAIR. ASSESSMENT: The vascular and stromal compartments of the ChP were segmented using K-means clustering on post-contrast 2D GRE images. Visual and qualitative assessment of ChP vascular characteristics were conducted independently by three observers. Vascular density (Volvessel/VolChP ratio) and susceptibility change (Δχ) induced by Ferumoxytol were analyzed on 3D GRE-derived susceptibility-weighted imaging and quantitative susceptibility mapping, respectively. STATISTICAL TESTS: Independent t-test, Mann-Whitney U test, and Chi-square test were utilized for group comparisons. The relationship between age and ChP's vascular alterations was examined using Pearson's correlation. Intra-class coefficient was calculated for inter-observer agreement. A P value <0.05 was considered statistically significant. RESULTS: 2D GRE images demonstrated superior contrast and accurate delineation of ChP substructures (ICC = 0.86). Older subjects exhibited a significantly smaller vascular density (16.5 ± 4.34%) and lower Δχ (22.10 ± 12.82 ppb) compared to younger subjects (24.85 ± 6.84% and 34.64 ± 12.69 ppb). Vascular density and mean Δχ within the ChP negatively correlated with age (r = -0.48, and r = -0.45). DATA CONCLUSION: Ferumoxytol-enhanced 7T images can demonstrate ChP alterations in elderly with decreased vascular density and expansion of nonvascular compartment. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

5.
Neuroimage ; 291: 120597, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554779

RESUMEN

Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p=0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.


Asunto(s)
Venas Cerebrales , Imagen por Resonancia Magnética , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética/métodos , Venas Cerebrales/diagnóstico por imagen , Oxígeno , Hipocampo/diagnóstico por imagen , Atrofia
6.
Lab Anim (NY) ; 53(2): 33-42, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38279029

RESUMEN

Proper animal conditioning is a key factor in the quality and success of preclinical neuroimaging applications. Here, we introduce an open-source easy-to-modify multimodal 3D printable design for rodent conditioning for magnetic resonance imaging (MRI) or other imaging modalities. Our design can be used for brain imaging in anesthetized or awake mice, and in anesthetized rats. We show ease of use and reproducibility of subject conditioning with anatomical T2-weighted imaging for both mice and rats. We also demonstrate the application of our design for awake functional MRI in mice using both visual evoked potential and olfactory stimulation paradigms. In addition, using a combined MRI, positron emission tomography and X-ray computed tomography experiment, we demonstrate that our proposed cradle design can be utilized for multiple imaging modalities.


Asunto(s)
Potenciales Evocados Visuales , Vigilia , Ratas , Ratones , Animales , Vigilia/fisiología , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuroimagen , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones
7.
Magn Reson Med ; 91(3): 1075-1086, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37927121

RESUMEN

PURPOSE: The accuracy of diffusion MRI tractography reconstruction decreases in the white matter regions with crossing fibers. The optic pathways in rodents provide a challenging structure to test new diffusion tractography approaches because of the small crossing volume within the optic chiasm and the unbalanced 9:1 proportion between the contra- and ipsilateral neural projections from the retina to the lateral geniculate nucleus, respectively. METHODS: Common approaches based on Orientation Distribution Function (ODF) peak finding or statistical inference were compared qualitatively and quantitatively to ODF Fingerprinting (ODF-FP) for reconstruction of crossing fibers within the optic chiasm using in vivo diffusion MRI ( n = 18 $$ n=18 $$ healthy C57BL/6 mice). Manganese-Enhanced MRI (MEMRI) was obtained after intravitreal injection of manganese chloride and used as a reference standard for the optic pathway anatomy. RESULTS: ODF-FP outperformed by over 100% all the tested methods in terms of the ratios between the contra- and ipsilateral segments of the reconstructed optic pathways as well as the spatial overlap between tractography and MEMRI. CONCLUSION: In this challenging model system, ODF-Fingerprinting reduced uncertainty of diffusion tractography for complex structural formations of fiber bundles.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Sustancia Blanca , Animales , Ratones , Ratones Endogámicos C57BL , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos
8.
bioRxiv ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38045415

RESUMEN

Purpose: The ability of MRI-based markers to detect myelin in the brain is limited. This study investigated the potential of combining multiple MRI markers, each targeting distinct myelin properties, to improve myelin characterization. Methods: We acquired ex vivo multiparametric MRI data at 7 Tesla from control and Gli1 -/- mouse brains at postnatal day 10 (P10), which exhibits enhanced myelination in the corpus callosum, followed by myelin basic protein (MBP) stained immunohistochemistry. Results: Although most MRI markers included in this study showed significant differences in the corpus callosum between control and Gli1 -/- , only fractional anisotropy (FA), mean diffusivity (MD), and T 2 had strong correlations with MBP signals. Partial least square regression (PSLR) based on MRI and MBP values from white matter regions suggested that T 2 had the highest contributions to myelin estimation. When both white and gray matter regions were included, inhomogeneous MT ratio and FA showed strong contributions. Conclusion: This study demonstrates the efficacy of multi-parametric MRI in detecting enhanced myelination in the Gli1 -/- mouse brain. T 2 and diffusion MRI parameters showed strong correlation with MBP signals in the genu of the corpus callosum at P10. The contribution of individual MRI parameter for detecting myelin can be evaluated using PLSR.

9.
ArXiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076512

RESUMEN

Random matrix theory (RMT) combined with principal component analysis has resulted in a widely used MPPCA noise mapping and denoising algorithm, that utilizes the redundancy in multiple acquisitions and in local image patches. RMT-based denoising relies on the uncorrelated identically distributed noise. This assumption breaks down after regridding of non-Cartesian sampling. Here we propose a Universal Sampling Denoising (USD) pipeline to homogenize the noise level and decorrelate the noise in non-Cartesian sampled k-space data after resampling to a Cartesian grid. In this way, the RMT approaches become applicable to MRI of any non-Cartesian k-space sampling. We demonstrate the denoising pipeline on MRI data acquired using radial trajectories, including diffusion MRI of a numerical phantom and ex vivo mouse brains, as well as in vivo $T_2$ MRI of a healthy subject. The proposed pipeline robustly estimates noise level, performs noise removal, and corrects bias in parametric maps, such as diffusivity and kurtosis metrics, and $T_2$ relaxation time. USD stabilizes the variance, decorrelates the noise, and thereby enables the application of RMT-based denoising approaches to MR images reconstructed from any non-Cartesian data. In addition to MRI, USD may also apply to other medical imaging techniques involving non-Cartesian acquisition, such as PET, CT, and SPECT.

10.
Natl Sci Rev ; 10(11): nwad251, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37900194

RESUMEN

Water input budget of global oceanic lithosphere at different tectonic settings are quantitatively estimated. The results indicate that the hydration at subduction zone is fundamentally essential to plate dynamics and water cycle of the Earth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA