Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Microorganisms ; 12(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38674647

RESUMEN

In this study, we developed a rapid and effective method for enriching the culture of nitrifying bioflocs (NBF) from aquacultural brackish water. The self-designed mixotrophic mediums with a single or mixed addition of sodium acetate, sodium citrate, and sucrose were used to investigate the enrichment process and nitrification efficiency of NBF in small-scale reactors. The results showed that NBF with an MLVSSs from 1170.4 mg L-1 to 2588.0 mg L-1 were successfully enriched in a period of less than 16 days. The citrate group performed the fastest enrichment time of 10 days, while the sucrose group had the highest biomass of 2588.0 ± 384.7 mg L-1. In situ testing showed that the highest nitrification efficiency was achieved in the citrate group, with an ammonia oxidation rate of 1.45 ± 0.34 mg N L-1 h-1, a net nitrification rate of 2.02 ± 0.20 mg N L-1 h-1, and a specific nitrification rate of 0.72 ± 0.14 mg N g-1 h-1. Metagenomic sequencing revealed that Nitrosomonas (0.0~1.0%) and Nitrobacter (10.1~26.5%) were dominant genera for AOB and NOB, respectively, both of which had the highest relative abundances in the citrate group. Linear regression analysis further demonstrated significantly positive linear relations between nitrification efficiencies and nitrifying bacterial genera and gene abundance in NBF. The results of this study provide an efficient enrichment culture method of NBF for the operation of biofloc technology aquaculture systems, which will further promote its wide application in modern intensive aquaculture.

2.
Intensive Crit Care Nurs ; 79: 103491, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37480701

RESUMEN

OBJECTIVES: This study aimed to investigate the prevalence and risk factors for carbapenem-resistant Enterobacterales colonisation/infection at admission and acquisition among patients admitted to the intensive care unit. RESEARCH METHODOLOGY/DESIGN: A prospective and multicentre study. SETTING: This study was conducted in 24 intensive care units in Anhui, China. MAIN OUTCOME MEASURES: Demographic and clinical data were collected, and rectal carbapenem-resistant Enterobacterales colonisation was detected by active screening. Multivariate logistic regression models were used to analyse factors associated with colonisation/infection with carbapenem-resistant Enterobacterales at admission and acquisition during the intensive care unit stay. RESULTS: There were 1133 intensive care unit patients included in this study. In total, 5.9% of patients with carbapenem-resistant Enterobacterales colonisation/infection at admission, and of which 56.7% were colonisations. Besides, 8.5% of patients acquired carbapenem-resistant Enterobacterales colonisation/infection during the intensive care stay, and of which 67.6% were colonisations. At admission, transfer from another hospital, admission to an intensive care unit within one year, colonisation/infection/epidemiological link with carbapenem-resistant Enterobacterales within one year, and exposure to any antibiotics within three months were risk factors for colonisation/infection with carbapenem-resistant Enterobacterales. During the intensive care stay, renal disease, an epidemiological link with carbapenem-resistant Enterobacterales, exposure to carbapenems and beta-lactams/beta-lactamase inhibitors, and intensive care stay of three weeks or longer were associated with acquisition. CONCLUSION: The prevalence of colonisation/infection with carbapenem-resistant Enterobacterales in intensive care units is of great concern and should be monitored systematically. Particularly for the 8.5% prevalence of carbapenem-resistant Enterobacterales acquisition during the intensive care stay needs enhanced infection prevention and control measures in these setting. Surveillance of colonisation/infection with carbapenem-resistant Enterobacterales at admission and during the patient's stay represents an early identification tool to prevent further transmission of carbapenem-resistant Enterobacterales. IMPLICATIONS FOR CLINICAL PRACTICE: Carbapenem-resistant Enterobacterales colonization screening at admission and during the patient's stay is an important tool to control carbapenem-resistant Enterobacterales spread in intensive care units.


Asunto(s)
Carbapenémicos , Unidades de Cuidados Intensivos , Humanos , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Prevalencia , Estudios Prospectivos , Factores de Riesgo
3.
Int J Biol Macromol ; 250: 125907, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482155

RESUMEN

Fish skeletal muscle is composed of two anatomically and functionally different fiber layers, white or fast and red or slow muscles. Myosin, the major structural protein of fish skeletal muscle, contains multiple myosin heavy chain (MYH) isoforms involved in the high plasticity of muscle in response to varying functional demands and/or environmental changes. In this study, we comparatively assayed the cellular and ultrastructural feature of white and red skeletal muscles. Then, a total of 28 class II myosin heavy chain genes were identified in by searching the Chinese perch genome database. Among them, 14 genes code for the fast-muscle-type myosin heavy chain, and 7 genes code for the slow-muscle-type myosin heavy chain. Further, the different isoform gene structures, function domains, phylogenetic relations, and muscle-fiber type-specific expression were characterized. This is the first systematic work on the molecular characterization of class II myosin heavy chain isoforms and the differential analysis of their expression in red and white muscle tissues in Chinese perch Siniperca chuatsi. Our work provided valuable information for a better understanding of myh genes and their molecular characteristics, and the correlations of multiple myosin isoforms with potential functions in response to varying functional demands and/or environmental changes.

4.
Front Vet Sci ; 10: 1100152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925605

RESUMEN

Animal welfare concerns in laying-hen production facilities have necessitated research on alternative strategies for improving egg production and hen health. At present, most laying-hen facilities in China use the fasting method, but with international emphasis on animal welfare, scholars have begun to find ways to improve production efficiency while ensuring animal welfare standards are adhered to. Therefore, this study investigated the effects of non-fasting molting on production performance, oxidative stress, intestinal morphology, and liver health of laying hens. A total of 180 healthy 90-week-old Dawu Jinfeng laying hens with similar body weights and laying rates (76 ± 2%) were randomly divided into three groups, with five replicates per group and 12 hens per replicate. The hens in the experimental group (NF) were molted using the non-fasting method, the negative control group (C) was not treated with centralized molting, and the positive control group (F) was molted using the fasting method. The results showed that: (1) During the molting period, the laying rate in the NF group (10.58%) decreased and was significantly lower than that in the other two groups (P < 0.05). During the secondary laying peak period, the laying rate in the NF group was highest (89.71%); significantly higher than that in the C group (P < 0.05). (2) During the molting period, compared to the C group, the NF group showed a significant decrease and increase in the total antioxidant capacity (T-AOC) and superoxide dismutase (T-SOD) activity, respectively (P < 0.05). During the secondary laying peak period, the T-SOD activity of the NF group was significantly lower than that of the C group (P < 0.05). (3) During the molting period, the villus height (VH) and the ratios of VH to crypt depth (V/C) of the duodenum, jejunum, and ileum in the NF group were significantly lower than those in the C group (P < 0.05). At the secondary laying peak period, the jejunum V/C was significantly higher than that in the C group (P < 0.05), whereas in the duodenum and ileum it increased but not significantly (P > 0.05). (4) During the molting period, serum glutathione transaminase (AST) and glutathione alanine transaminase (ALT) activities were significantly higher (P < 0.05), and very low-density lipoprotein (VLDL) content and liver weight were significantly lower (P < 0.05) in the non-fasted and fasted groups. However, there was a low degree of liver injury (cell boundary still visible) in the NF group. At the secondary laying peak period, there was no significant difference (P > 0.05) in the indices among the three groups and the liver returned to normal. In summary, non-fasting molting can improve the production performance of laying hens in the later stages, ensure the welfare and health of animals, and provide a theoretical basis for the efficient production of laying hens.

5.
Front Neurosci ; 17: 1100464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845428

RESUMEN

Introduction: Upper limb motor impairments after stroke cause patients partial or total loss of the capability of performing daily living, working, and social activities, which significantly affects the quality of life (QoL) of patients and brings a heavy burden to their families and society. As a non-invasive neuromodulation technique, transcranial magnetic stimulation (TMS) can act not only on the cerebral cortex, but also on peripheral nerves, nerve roots, and muscle tissues. Previous studies have shown that magnetic stimulation on the cerebral cortex and peripheral tissues has a positive effect on the recovery of upper limb motor function after stroke, however, few studies have reported the combination of the two. Objective: This study was to investigate whether high frequency repetitive transcranial magnetic stimulation (HF-rTMS) combined with cervical nerve root magnetic stimulation more effectively ameliorates upper limb motor function in stroke patients. We hypothesized that the combination of the two can achieve a synergistic effect and further promotes functional recovery. Methods: Sixty patients with stroke were randomly divided into four groups and received real or sham rTMS stimulation and cervical nerve root magnetic stimulation consecutively before other therapies, once daily over five fractions per week for a total of 15 times. We evaluated the upper limb motor function and activities of daily living of the patients at the time of pre-treatment, post-treatment, and 3-month follow up. Results: All patients completed study procedures without any adverse effects. The upper limb motor function and activities of daily living improved in patients of each group were improved after treatment (post 1) and 3 months after treatment (post 2). Combination treatment was significantly better than single treatments alone or sham. Conclusion: Both rTMS and cervical nerve root magnetic stimulation effectively promoted upper limb motor recovery in patients with stroke. The protocol combining the two is more beneficial for motor improvement and patients can easily tolerate it. Clinical trial registration: https://www.chictr.org.cn/, identifier ChiCTR2100048558.

6.
Br J Nutr ; 130(4): 604-615, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-36373572

RESUMEN

As an internal time-keeping mechanism, circadian rhythm plays crucial role in maintaining homoeostasis when in response to nutrition change; meanwhile, branched-chain amino acids (BCAA) in skeletal muscle play an important role in preserving energy homoeostasis during fasting. Previous results from our laboratory suggested that fasting can influence peripheral circadian rhythm and BCAA metabolism in fish, but the relationship between circadian rhythm and BCAA metabolism, and whether circadian rhythm regulates BCAA metabolism to maintain physiological homoeostasis during fasting remains unclear. This study shows that the expression of fifteen core clock genes as well as KLF15 and Bcat2 is highly responsive to short-term fasting in fast muscle of Siniperca chuatsi, and the correlation coefficient between Clock and KLF15 expression is enhanced after fasting treatment. Furthermore, we demonstrate that the transcriptional expression of KLF15 is regulated by Clock, and the transcriptional expression of Bcat2 is regulated by KLF15 by using dual-luciferase reporter gene assay and Vivo-morpholinos-mediated gene knockdown technique. Therefore, fasting imposes a dynamic coordination of transcription between the circadian rhythm and BCAA metabolic pathways. The findings highlight the interaction between circadian rhythm and BCAA metabolism and suggest that fasting induces a switch in KLF15 expression through affecting the rhythmic expression of Clock, and then KLF15 promotes the transcription of Bcat2 to enhance the metabolism of BCAA, thus maintaining energy homoeostasis and providing energy for skeletal muscle as well as other tissues.


Asunto(s)
Aminoácidos de Cadena Ramificada , Percas , Animales , Músculo Esquelético/metabolismo , Ritmo Circadiano/fisiología , Ayuno
7.
Mar Biotechnol (NY) ; 24(5): 1023-1038, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36083384

RESUMEN

The development and growth of fish skeletal muscles require myoblast fusion to generate multinucleated myofibers. While zebrafish fast-twitch muscle can fuse to generate multinucleated fibers, the slow-twitch muscle fibers remain mononucleated in zebrafish embryos and larvae. The mechanism underlying the fiber-type-specific control of fusion remains elusive. Recent genetic studies using mice identified a long-sought fusion factor named Myomixer. To understand whether Myomixer is involved in the fiber-type specific fusion, we analyzed the transcriptional regulation of myomixer expression and characterized the muscle growth phenotype upon genetic deletion of myomixer in zebrafish. The data revealed that overexpression of Sonic Hedgehog (Shh) drastically inhibited myomixer expression and blocked myoblast fusion, recapitulating the phenotype upon direct genetic deletion of myomixer from zebrafish. The fusion defect in myomixer mutant embryos could be faithfully rescued upon re-expression of zebrafish myomixer gene or its orthologs from shark or human. Interestingly, myomixer mutant fish survived to adult stage though were notably smaller than wildtype siblings. Severe myopathy accompanied by the uncontrolled adipose infiltration was observed in both fast and slow muscle tissues of adult myomixer mutants. Collectively, our data highlight an indispensable role of myomixer gene for cell fusion during both embryonic muscle development and post-larval muscle growth.


Asunto(s)
Enfermedades Musculares , Pez Cebra , Animales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Mioblastos/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Fish Shellfish Immunol ; 130: 530-537, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36007829

RESUMEN

In this study, we conducted functional analyses for two ISG15 homologues of Larimichthys crocea (LcISG15-1 and LcISG15-2). Our results of qRT-PCR showed that both LcISG15-1 and LcISG15-2 were significantly changed in head kidney and peripheral blood, after poly (I:C) stimulation. Western blot analyses with prepared polyclonal antibodies suggested that LcISG15-1 and LcISG15-2 both could be secreted by primary head kidney lymphocytes into the extracellular milieu. The purified recombinant LcISG15-1 (rLcISG15-1) and LcISG15-2 (rLcISG15-2) could both activate primary macrophages as extracellular cytokines and significantly enhance macrophage respiratory burst, NO production and bactericidal activity and induce the expression of proinflammatory cytokine genes of the cells. Moreover, rLcISG15-2 exhibited much stronger cytokine-like activities than those of rLcISG15-1, indicating the ISG15-2 gene copy evolved enhanced activity after gene duplication of ISG15 in sciaenid fishes. These results indicated important roles of LcISG15-1 and especially LcISG15-2 in immune regulation and host immune defense of large yellow croaker against viral and bacterial infection.


Asunto(s)
Enfermedades de los Peces , Perciformes , Animales , Antivirales/metabolismo , Proteínas de Peces , Regulación de la Expresión Génica , Riñón Cefálico/metabolismo , Inmunidad Innata/genética , Interferones/genética , Filogenia , Poli I-C/farmacología
9.
Artículo en Inglés | MEDLINE | ID: mdl-36011681

RESUMEN

The construction industry across the world is characterized by a high safety risk, and the occurrence of these safety accidents has led to substantial economic and social losses. The workers' unsafe behaviors are considered to be a main cause. Thus, recently, scholars in the construction industry have shifted their attention to the investigation of the influencing factors (or antecedents) and their impact on workers' safety behaviors (WSBs), hoping to provide insight into useful management policies. The existing literature has identified many society-level, cooperation-level, project-level, and individual-level concepts influencing WSB, but ignores the influence of intra-group informal interaction (IGII) on WSB. This study constructed a conceptual model for IGII, group knowledge sharing (GKS), and group identification (GI) to determine their influence on construction workers' safety behaviors, and then conducted simulation analysis using the software of NetLogo. The results show that IGII, GKS, and GI can positively influence workers' safety behaviors, and IGII can also positively influence WSB through GKS and GI. This study enriches the theoretical knowledge on the causation of construction workers' safety behaviors, provides references for project managers to carry out proper safety management, and offers a theoretic foundation for the formulation of industry regulations.


Asunto(s)
Industria de la Construcción , Salud Laboral , Accidentes de Trabajo , Humanos , Administración de la Seguridad , Identificación Social , Encuestas y Cuestionarios
10.
J Fish Biol ; 101(1): 168-178, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35538670

RESUMEN

In skeletal muscle, autophagy regulates the development and growth of muscle fibres and maintains the normal muscle metabolism. Under starvation and refeeding conditions, the effect of reactive oxygen species (ROS) levels on skeletal muscle autophagy is still unclear, although the excessive accumulation of ROS has been shown to increase autophagy in cells. The purpose of this study was to explore the effects of starvation and diet after starvation on the autophagy of adult Chinese perch muscle, and to determine the level of ROS in the muscle. We performed zero (Normal control), three and seven starvation treatments on adult Chinese perch, and returned to normal feeding for 3 days after starvation for 7 days. In the muscles of the adult Chinese perch muscle after 3 days of starvation, the autophagy marker protein LC3 and the number of autophagosomes remained basically the same as in the normal feeding situation. However, on starvation for 7 days, the mitochondrial autophagy was sensitive and the number of autophagosomes increased, but the antioxidant-related molecules (malondialdehyde, catalase, glutathione S-transferase, glutathione and anti-superoxide anion) decreased and the accumulation of ROS was obvious. In addition, the extended starvation time also increased the level of LC3 protein. However, by refeeding after starvation this nutritional stress resulted in a decrease in ROS levels and a partial restoration of antioxidant enzyme activity. Our data show that in the adult Chinese perch muscle, starvation could reduce the antioxidant activity through the accumulation of ROS, and that the number of autophagosomes continues to increase. Refeeding after starvation could effectively compensate for the level of ROS, and restore the mRNA abundance of antioxidant genes and the activity of antioxidant enzymes to reduce autophagy and improve feed efficiency. Further research should optimize starvation conditions to reduce autophagy in muscles and maintain normal muscle metabolism.


Asunto(s)
Percas , Inanición , Animales , Antioxidantes/metabolismo , Autofagia , China , Músculo Esquelético/metabolismo , Estrés Oxidativo , Percas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Dev Comp Immunol ; 125: 104232, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400224

RESUMEN

In this study, a c-type lysozyme gene (BsLyzC) was identified and characterized from a marine fish, Bostrychus sinensis. The BsLyzC encodes 154 amino acids and contains a signal peptide of 17 amino acids, two catalytic residues and eight cysteine residues. The genomic DNA of BsLyzC consists of four exons and three introns. The BsLyzC shares high sequence similarity with c-type lysozyme from other fish species. The qPCR assays indicated that the BsLyzC exhibited a constitutive expression pattern in eleven examined tissues of healthy B. sinensis individuals. The transcripts of BsLyzC could be significantly induced after infection of Vibrio parahemolyticus in blood, spleen and head kidney. The optimal temperature and pH for recombinant BsLyzC (rBsLyzC) were found to be 50 °C and 6.0, respectively. The rBsLyzC exhibited antibacterial activities against two Gram-positive bacteria and two Gram-negative bacteria. These results indicate that the BsLyzC is involved in the antibacterial immunity of B. sinensis.


Asunto(s)
Proteínas de Peces/metabolismo , Peces/inmunología , Muramidasa/genética , Vibriosis/inmunología , Vibrio parahaemolyticus/fisiología , Secuencia de Aminoácidos , Animales , Antibacterianos , Clonación Molecular , Proteínas de Peces/genética , Inmunidad Innata , Muramidasa/metabolismo , Alineación de Secuencia , Regulación hacia Arriba , Proteínas de Pez Cebra/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-34271193

RESUMEN

Fish skeletal muscles are composed of spatially well-separated fiber types, namely, red and white muscles with different physiological functions and metabolism. To compare the DNA methylation profiles of the two types of muscle tissues and identify potential candidate genes for the muscle growth and development under epigenetic regulation, genome-wide DNA methylation of the red and white muscle in Chinese perch Siniperca chuatsi were comparatively analyzed using bisulfate sequencing methods. An average of 0.9 billion 150-bp paired-end reads were obtained, of which 86% were uniquely mapped to the genome. Methylation mostly occurred at CG sites at a ratio of 94.43% in the red muscle and 93.16% in the white muscle. The mean methylation levels at C-sites were 5.95% in red muscle and 5.83% in white muscle, whereas the mean methylation levels of CG, CHG, and CHH were 73.23%, 0.62%, and 0.67% in red muscle, and 71.01%, 0.62%, and 0.67% in white muscle, respectively. A total of 4192 differentially methylated genes (DMGs) were identified significantly enriched in cell signaling pathways related to skeletal muscle differentiation and growth. Various muscle-related genes, including myosin gene isoforms and regulatory factors, are differentially methylated in the promoter region between the red and white muscles. Further analysis of the transcriptional expression of these genes showed that the muscle regulatory factors (myf5, myog, pax3, pax7, and twitst2) and myosin genes (myh10, myh16, myo18a, myo7a, myo9a, and myl3) were differentially expressed between the two kinds of muscles, consistent with the DNA methylation analysis results. ELISA assays confirmed that the level of 5mC in red muscle was significantly higher than in white muscle (P < 0.05). The RT-qPCR assays revealed that the expression levels of the three DNA methylation transferase (dnmt) subtypes, dnmt1, dnmt3ab, and dnmt3bb1, were significantly higher in red muscle than in white muscle. The higher DNA methylation levels in the red muscle may result from higher DNA methylation transferase expression in the red muscles. Thus, this study might provide a theoretical foundation to better understand epigenetic regulation in the growth and development of red and white muscles in animals, at least in Chinese perch fish.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo/veterinaria , Genoma , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Percas/genética , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Percas/crecimiento & desarrollo
13.
Artículo en Inglés | MEDLINE | ID: mdl-34118407

RESUMEN

Fish skeletal muscles are composed of two distinct types, slow and fast muscles, and they play important roles in maintaining the body's movement and energy metabolism. The two types of muscle are easy to separate, so they are often used as the model system for studies on their physiological and functional characteristics. In this study, we revealed that the carbohydrate and lipid metabolic KEGG pathways are different between slow and fast muscles of Chinese perch with transcriptome analysis. In fast muscle, glucose metabolism was catabolic with higher glycolysis capacity, while in slow muscle, glucose metabolism was anabolic with more glycogen synthesis. In addition, oxidative metabolism in slow muscle was stronger than that in fast muscle. By analyzing the expression levels of 40 miRNAs involved in metabolism in the muscles of Chinese perch, 18 miRNAs were significantly upregulated and 7 were significantly downregulated in slow muscle compared with fast muscle. Based on functional enrichment analysis of their target genes, the differential expression levels of 17 miRNAs in slow and fast muscles were reflected in their carbohydrate and lipid metabolism. Among these, 15 miRNAs were associated with carbohydrate metabolism, and 6 miRNAs were associated with lipid metabolism. After 3 days of starvation, the expression levels of 15 miRNAs involved in glucose metabolism in fast and slow muscles increased. However, after 7 days of starvation, the mRNA levels of miR-22a, miR-23a, miR-133a-3p, miR-139, miR-143, miR-144, miR-181a and miR-206 decreased to basal levels. Our data suggest that the possible reason for the difference in glucose and lipid metabolism is that more miRNAs inhibit the expression of target genes in slow muscle.


Asunto(s)
Metabolismo Energético , Perfilación de la Expresión Génica , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Percas/fisiología , Ciencias de la Nutrición Animal , Animales , Conducta Alimentaria , Biblioteca de Genes , Glucosa/metabolismo , Glucógeno/metabolismo , Glucólisis , Metabolismo de los Lípidos , Metabolismo , Miosinas/química , Oxígeno/metabolismo , Isoformas de Proteínas
14.
Nat Genet ; 53(5): 742-751, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33875864

RESUMEN

The evolutionary and genetic origins of the specialized body plan of flatfish are largely unclear. We analyzed the genomes of 11 flatfish species representing 9 of the 14 Pleuronectiforme families and conclude that Pleuronectoidei and Psettodoidei do not form a monophyletic group, suggesting independent origins from different percoid ancestors. Genomic and transcriptomic data indicate that genes related to WNT and retinoic acid pathways, hampered musculature and reduced lipids might have functioned in the evolution of the specialized body plan of Pleuronectoidei. Evolution of Psettodoidei involved similar but not identical genes. Our work provides valuable resources and insights for understanding the genetic origins of the unusual body plan of flatfishes.


Asunto(s)
Peces Planos/anatomía & histología , Peces Planos/genética , Filogenia , Análisis de Secuencia de ADN , Secuencia de Aminoácidos , Aletas de Animales/anatomía & histología , Animales , Biocatálisis , Evolución Molecular , Regulación de la Expresión Génica , Anotación de Secuencia Molecular , Mutación/genética , Tamaño de los Órganos , Especificidad de la Especie
15.
Biochem Genet ; 59(4): 837-855, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33544299

RESUMEN

Several fish species are known to possess mechanisms that allow them to adapt to environments with different salinities. The aim of this study was to investigate the effects of salinity on the expression of aquaporins (aqp1a, aqp3a, aqp8a, and aqp9a) in the gills and intestines of Chinese black sleeper. After 30 days of acclimation, the expression of aqp1a, aqp3a, and aqp9a in the gills was significantly higher in fish transferred to 5 ppt than in those transferred to 40 ppt seawater, whereas aqp8 expression was lower. In contrast, aqp1a, aqp3a, and aqp8a expression in the intestines was higher in fish acclimated in 40 ppt than in those acclimated in 5 ppt. During abrupt salinity acclimation, the levels of aqp1a and aqp9a in the gills varied over time in fish acclimated in 5 ppt, but not in 40 ppt. The aqp3a levels in gills were higher in the 5 ppt group after 24 h than in the 40 ppt. The expression level of aqp8a in gills was higher in 40 ppt than in 5 ppt, except for that at 12 h. In the intestines, expression level of aqp1a and aqp8a were significantly upregulated from 12 to 48 h following acclimation in 40 ppt and aqp3a was higher in 40 ppt group than in 5 ppt, while aqp9a expression exhibited an opposite trend. These findings suggest that aqp1a, aqp3a, aqp8a and aqp9a may play a major osmoregulatory role in water transport in the gills and intestines during acclimation to different salinity environment.


Asunto(s)
Acuaporinas/metabolismo , Peces/metabolismo , Tolerancia a la Sal , Animales , China , Branquias/metabolismo , Salinidad
16.
Sci Rep ; 11(1): 3657, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574492

RESUMEN

Muscle is an important structural tissue in aquatic animals and it is susceptible to bacterial and fungal infection, which could affect flesh quality and health. In this study, Chinese soft-shelled turtles were artificially infected with two pathogens, Proteus vulgaris and Elizabethkingia meningoseptica and the effects on muscle nutritional characteristics, oxidative stress and autophagy were assayed. Upon infection, the muscle nutritional composition and muscle fiber structure were notably influenced. Meanwhile, the mRNA expression of Nrf2 was down-regulated and Keap1 up-regulated, thus resulting in a decrease in antioxidant capacity and oxidative stress. However, with N-acetylcysteine treatment, the level of oxidative stress was decreased, accompanied by significant increases in antioxidant enzyme activities and the mRNA levels of SOD, CAT, GSTCD, and GSTO1. Interestingly, there was a significant increase in autophagy in the muscle tissue after the pathogen infection, but this increase could be reduced by N-acetylcysteine treatment. Our findings suggest that muscle nutritional characteristics were dramatically changed after pathogen infection, and oxidative stress and autophagy were induced by pathogen infection. However, N-acetylcysteine treatment could compromise the process perhaps by decreasing the ROS level and regulating Nrf2-antioxidant signaling pathways.


Asunto(s)
Autofagia/efectos de los fármacos , Músculos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tortugas/microbiología , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , China , Flavobacteriaceae/patogenicidad , Infecciones por Flavobacteriaceae/genética , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/patología , Músculos/microbiología , Proteus vulgaris/patogenicidad , Transducción de Señal/efectos de los fármacos , Tortugas/genética , Tortugas/metabolismo
17.
Mar Biotechnol (NY) ; 22(5): 620-630, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32839828

RESUMEN

Nrf2 is an important transcription factor involved in the antioxidant response and is widely expressed in animal tissues. The function of Nrf2 is regulated by its negative regulator Keap1 by inducing its cytoplasmic degradation. Recent studies have suggested that Nrf2 is also regulated post-transcriptionally via miRNAs. However, to date, how miRNAs regulate Nrf2 in fish skeletal muscles is unknown. In this study, the full-length cDNAs with 2398 bp of the Nrf2 was firstly cloned by SMART RACE amplification tools from Chinese perch. The Nrf2 gene structure and its 3'-UTR region for possible miRNA binding sites, as well as its spatial expression profile were assayed. Then, we employed TargetScan Fish tool MiRNAnome to predict putative sites for five miRNAs including miR-181a-5p, MiR-194a, MiR-216a, miR-459-5p, and miR-724. Using qRT-PCR assay, we found that Nrf2 mRNA levels have negative correlation with all five miRNAs expression in muscle of nutritionally deprived fish, and that ectopic expression of miR-181a-5p alone reduces Nrf2 mRNA levels. Luciferase reporter assay in a heterologous cell system revealed that each of the five miRNAs reduced Nrf2 expression, suggesting a direct regulatory mechanism. Moreover, the miR-181a-5p suppression using specific antagomir led to a significant increase in Nrf2 expression in vivo. At the same time, the expression levels of the antioxidant enzymes CAT, ZnSOD, GPx, GSTA, and GSTA genes increased significantly after injecting miR-181a-5p antagomir. Taken together, these findings provide evidence that miRNAs are involved in the Nrf2 signaling networks in regulation of oxidative stress in fish, at least in Chinese perch muscle.


Asunto(s)
MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Percas/metabolismo , Animales , Proteínas de Peces/metabolismo , Privación de Alimentos/fisiología , Regulación de la Expresión Génica , Percas/genética , ARN Mensajero , Transducción de Señal
18.
Front Genet ; 11: 714, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793279

RESUMEN

Spinibarbus caldwelli is an omnivorous cyprinid fish that is distributed widely in China. To investigate the adaptive evolution of S. caldwelli, the muscle transcriptome was sequenced by Illumina HiSeq 4000 platform. A total of 80,447,367 reads were generated by next-generation sequencing. Also, 211,386 unigenes were obtained by de novo assembly. Additionally, we calculated that the divergence time between S. caldwelli and Sinocyclocheilus grahami is 23.14 million years ago (Mya). And both of them diverged from Ctenopharyngodon idellus 46.95 Mya. Furthermore, 38 positive genes were identified by calculating Ka/Ks ratios from 9225 orthologs. Among them, several immune-related genes were identified as positively selected, such as POLR3B, PIK3C3, TOPORS, FASTKD3, CYPLP1A1, and UACA. Our results throw light on the nature of the natural selection of S. caldwelli and contribute to future immunological and transcriptome studies.

19.
Ecotoxicol Environ Saf ; 204: 111051, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32763565

RESUMEN

The present study was performed to determine the effect of waterborne cadmium (Cd) exposure on oxidative stress, autophagy and mitochondrial dysfunction, and to explore the mechanism of Cd-induced liver damage in freshwater teleost Procypris merus. To this end, P. merus were exposed to waterborne 0, 0.25 and 0.5 mg/L Cd for 30 days (equal to 0, 2.22 and 4.45 µmol Cd/l). The waterborne Cd exposure significantly increased hepatic Cd accumulation and impaired histological structure of the liver of P. merus. both low and high-dose waterborne Cd exposure induced oxidative stress in the liver of P. merus, through increases Malondialdehyde (MDA) and reactive oxide species (ROS) accumulation in the liver. The Cd-induced oxidative stress in liver may result from reduction of enzyme activities (superoxide dismutases (SOD), catalases (CAT), GSH-S-transferases (GST)) and transcriptional expression of antioxidant related genes (gpx1, gpx2, cata, gsta1, sod1). Furthermore, the present study showed that waterborne Cd exposure decreased the transcriptional factor (nrf2) expression, which might lead to the down-regulation of antioxidant gene expression. Transmission electron microscopy (TEM) observations demonstrated that waterborne Cd exposure induced autophagy in the liver of P. merus. Gene expression analysis showed that waterborne Cd exposure also induced mRNA expression of a set of genes (beclin1, ulk1, atg5, lc3a, atg4b, atg9a, and p62) involved in the autophagy process, indicating that the influence of Cd on autophagy involved transcription regulation of autophagy gene expression. Waterborne Cd exposure induced a sharp decrease in ATP content in the liver of P. merus. In addition, the expression of mitochondrial function genes (sdha, cox4i1, cox1, atp5f1, and mt-cyb) are significantly decreased in the liver of P. merus in Cd treated groups, manifesting the suppression of Cd on mitochondrial energy metabolism. Taken together, our experiments demonstrate that waterborne Cd exposure induced oxidative stress, autophagy and mitochondrial dysfunction in the liver of P. merus. These results may contribute to the understanding of mechanisms that hepatotoxicity of Cd in teleost.


Asunto(s)
Antioxidantes/fisiología , Autofagia/efectos de los fármacos , Cadmio/toxicidad , Cyprinidae/fisiología , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Hígado/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Distribución Aleatoria
20.
Front Genet ; 11: 852, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849831

RESUMEN

The branched-chain amino acids (BCAAs) play a key role in the energy metabolism of the muscle tissue and the Krüppel-like factor 15 (KLF15) as a transcription factor, which is a key regulator of BCAA metabolism in the skeletal muscle. This study assessed the effect of starvation for 0, 3, 7, and 15 days on BCAA metabolism in the skeletal muscle of Nile tilapia. The results showed that the expression of KLF15 showed a trend of increasing first and then decreasing during starvation, as well as the expression and activity of branched-chain aminotransferase 2 (BCAT2) and alanine aminotransferase (ALT). On the other hand, the content of BCAA was at first decreased and then upregulated, and it reached the lowest level after starvation for 3 days. In addition, through dual-luciferase reporter assay and injection experiments, it was found that KLF15 is the target gene of miR-125a-3p, which further verified that miR-125a-3p can regulate the BCAA metabolism by targeting KLF15 in the skeletal muscle. Thus, our work investigated the possible mechanisms of BCAA metabolism adapting to nutritional deficiency in the skeletal muscle of Nile tilapia and illustrated the regulation of BCAA metabolism through the miR-125a-3p-KLF15-BCAA pathway in the skeletal muscle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...