Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 232: 116311, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290622

RESUMEN

The organic pollutants in industrial wastewater continuously endanger human health. Therefore, effective treatment of organic pollutants is very urgent. Photocatalytic degradation technology is an excellent solution to remove it. TiO2 photocatalysts are easy to prepare and have high catalytic activity, unfortunately, TiO2 only absorbs ultraviolet light limiting its utilization of visible light. In this study, a facile environmentally friendly synthesis of Ag-coated on micro-wrinkled TiO2-based catalysts in order to extend the absorption of Visible light. Firstly, a fluorinated titanium dioxide precursor was prepared by a one-step solvothermal method, and the precursor was calcined at high temperature in a nitrogen atmosphere to form a carbon dopant, and then a surface silver-deposited carbon/fluorine co-doped TiO2 photocatalyst C/F-Ag-TiO2 was prepared by a hydrothermal method The results showed that the Ag was coated on the wrinkled TiO2 layer and C/F-Ag-TiO2 photocatalyst was synthetized successfully. Benefit from the synergistic effect of doped carbon and fluorine atoms in combination with the quantum size effect of the surface silver nanoparticles, the band gap energy of C/F-Ag-TiO2 (2.56 eV) is obviously lower than anatase (3.2eV). The photocatalyst achieved an impressive degradation rate of 84.2% for Rhodamine B in 4 h, with a degradation rate constant of 0.367 h-1, which was 17 times higher than that of P25 under visible light. Therefore, the C/F-Ag-TiO2 composite is a promising candidate as a highly efficient photocatalyst for environmental remediation.


Asunto(s)
Contaminantes Ambientales , Nanopartículas del Metal , Humanos , Plata , Flúor , Luz , Titanio , Carbono , Catálisis
2.
Chempluschem ; 86(2): 291-297, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33605560

RESUMEN

Although perovskite films have excellent extinction coefficients, further increase of the light-absorbing capacity by increasing the thickness of the active layer is always required in perovskite solar cells (PSCs). However, to maintain the morphology quality of the perovskite layer, the film thickness is subject to certain restrictions. To increase the light absorbance without significantly inflating the perovskite film while keeping the high quality of the perovskite film, herein, we added an aqueous solution of gold nanorods (AuNRs) to the perovskite precursor solution via a so-called asynchronous synergistic effect (ASE) strategy of water and AuNR. The former improves the quality of the perovskite film during the crystallization process to reduce defect density and enhance carrier mobility. Simultaneously, the latter increases the light absorption of the perovskite layer through the localized surface plasmon resonance (LSPR) effect when the device is exposed to light. We show that the ASE strategy leads to an excellent power conversion efficiency (PCE) of 21.73 % and outstanding long-term stability, which can retain 95 % of its initial PCE after storage for three months in an air atmosphere.

3.
Phys Chem Chem Phys ; 22(41): 23743-23753, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33057548

RESUMEN

Carbon nanotubes (CNT)-cerium oxide (CeO2) nanocomposites were fabricated successfully by one-pot microwave hydrothermal growth of regular CeO2 nanoparticles with a size of 8 nm on hydroxyl-functionalized multi-walled CNTs. These nanocomposite photocatalysts demonstrated an acid orange (AO7) photocatalytic degradation efficiency of above 90% under solar-simulated light irradiation for 3 h, which was much higher than that of the pure CeO2 nanoparticles. The enhanced photocatalytic activity was observed to mainly originate from the ˙O2- and hole traps, while the hydroxyl radical ˙OH played a secondary role.

4.
Nanotechnology ; 31(22): 225402, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32066134

RESUMEN

Heating under low solar radiation intensity is demonstrated to facilitate the cleaning of crude oil by the hydrophobic nanocomposite adsorbents of reduced graphene oxide (RGO) melamine sponge (MS@RGO) foams. The heat generated by the irradiation reduces the viscosity of the crude oil, and consequently increases the oil-diffusion coefficient of the pores of the MS@RGO foams and speeds up the oil-sorption rate. Even under a solar radiation intensity as low as 2 kW m-2, the temperature of crude oil rapidly rises to 68 °C or higher within 10 min. It only takes 29 s to completely absorb 6 g of crude oil at 60 °C by three tiny pieces of MS@RGO foam. This work makes better use of the excellent photothermal conversion characteristics of crude oil, and its photothermal conversion mechanism under simulated solar radiation is also discussed. This methodology can be adopted to clean up viscous crude oil or extract other chemicals effectively at a large scale, and provides a complete solution for the cleanup of crude oil in the sea or on the beach for actual engineering applications.

5.
ChemSusChem ; 13(10): 2522-2539, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32045509

RESUMEN

Sodium-ion capacitors (SICs), designed to attain high energy density, rapid energy delivery, and long lifespan, have attracted much attention because of their comparable performance to lithium-ion capacitors (LICs), alongside abundant sodium resources. Conventional SIC design is based on battery-like anodes and capacitive cathodes, in which the battery-like anode materials involve various reactions, such as insertion, alloying, and conversion reactions, and the capacitive cathode materials usually depend on activated carbon (AC). However, researchers have attempted to construct SICs based on battery-like cathodes and capacitive anodes or a combination of both in recent years. In this Minireview, charge storage mechanisms and material design strategies for SICs are summarized, with a focus on the battery-like anode materials from both inorganic and organic sources. Additionally, the challenges in the fabrication of SICs and future research directions are discussed.

6.
J Colloid Interface Sci ; 565: 142-155, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31951986

RESUMEN

The precursor particles were successfully prepared by a facile microwave hydrothermal method. Compared with solvothermal and precipitation method, microwave hydrothermal method can greatly shorten the reaction time and increase the product yields. Nitrogen (N) doped zinc oxide (ZnO) nanoparticles were derived via one-step controllable pyrolysis of zeolitic imidazolate framework-8 (Zif-8) precursors under 550 °C. The powder X-ray diffraction (XRD) analysis, elemental mapping image, energy dispersive spectrometry (EDS) spectra and X-ray photoelectron spectroscopy (XPS) analysis proved that Zif-8 particles were converted to ZnO and the N atoms were successfully doped into ZnO lattice. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results demonstrated that N doped ZnO retained the morphology of Zif-8 with a particle size of approximately ~70 nm and the UV-visible diffuse reflectance spectra (UV-vis DRS) showed that the as-prepared N doped ZnO possessed a lower band gap (3.16 eV) than commercial ZnO (3.26 eV). The photocatalytic activities of the as-prepared samples were evaluated by the degradation rate of methylene blue (MB) upon irradiation with solar-simulated light. The photocatalytic degradation efficiency of N doped ZnO was 95.3% after 80 min illumination, which was much higher than that of other samples prepared by other methods. Quenching tests proved that the photo-generated holes (h+) played a main role in the photodegradation of MB under solar-simulated light irradiation.

7.
Chem Rec ; 20(7): 710-729, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31944590

RESUMEN

The nano-oxide materials with special structures prepared by template methods have a good dispersion, regular structures and high specific surface areas. Therefore, in some areas, improved properties are observed than conventional bulk oxide materials. For example, in the treatment of dye wastewater, the treatment efficiency of adsorbents and catalytic materials prepared by template method was about 30 % or even higher than that of conventional samples. This review mainly focuses on the progress of inorganic, organic and biological templates in the preparation of micro- and nano- oxide materials with special morphologies, and the roles of the prepared materials as adsorbents and photocatalysts in dye wastewater treatment. The characteristics and advantages of inorganic, organic and biological template are also summarized. In addition, the applications of template method prepared oxides in the field of sensors, drug carrier, energy materials and other fields are briefly discussed with detailed examples.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/química , Óxidos/química , Aguas Residuales/química , Purificación del Agua , Tamaño de la Partícula , Propiedades de Superficie
8.
Mater Sci Eng C Mater Biol Appl ; 108: 110361, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31923998

RESUMEN

Antifouling biocides releasing restricts the longevity of antifouling coatings. Compared with the anchoring state, the releasing behavior of agents is much faster on the voyage, while the biofouling process is tougher. In this work, a series of capsaicin-based pH-triggered polyethylene glycol/capsaicin@chitosan (PEG/CAP@CS), polyvinyl alcohol (PVA)/CAP@CS and alginate (ALG)/CAP@CS multilayer films are prepared with controlling antimicrobial properties in marine environments. There are 23.70, 23.35 and 22.06 ppb CAP releasing from (PVA/CAP@CS)20, (PEG/CAP@CS)20 and (ALG/CAP@CS)20 films after immersing in pH 4 solutions for 60 days, while only 13.07, 12.95 and 11.55 ppb CAP have been found in alkaline solutions after immersing for the same time, respectively. All these three types of films exhibit extraordinary pH responsive properties. They can control the CAP release at a low level in alkaline solutions, and make the CAP release fast in acid solutions. Moreover, the antibacterial properties against P.aeruginosa are outstanding about 95.84%, 95.0% and 96.91% for (PVA/CAP@CS)20, (PEG/CAP@CS)20 and (ALG/CAP@CS)20 films, respectively. The bacteriostasis of (ALG/CAP@CS)20 film keeps 92.73% after 60 days in alkaline solution, which means it is steadily controlled in the marine environment. Although with similar antibacterial properties to those of (PEG/CAP@CS)20 film, (PVA/CAP@CS)20 film displays the maximum decrease with about 92% in acid solution after 60 days. The ALG/CAP@CS film with the best-controlled release performance and long-term antibacterial properties provides novel guidance for developing new antifouling coatings application in the marine environment.


Asunto(s)
Antibacterianos/farmacología , Incrustaciones Biológicas , Capsaicina/farmacología , Ecosistema , Alginatos/química , Quitosano/química , Concentración de Iones de Hidrógeno , Conformación Molecular , Nanocápsulas/química , Imagen Óptica , Polietilenglicoles/química , Alcohol Polivinílico/química , Pseudomonas aeruginosa/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática
9.
Nanotechnology ; 31(2): 025704, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31550686

RESUMEN

Self-healing polymer materials (SHPM) have aroused great interests in recent years. Ideal SHPM should have not only simple operations, but also high elongations at break, tensile strain and self-healing properties at room temperature. Herein, the amidated carbon fibers (CFs) reinforced self-healing polymer composites were designed by hydrogen bonding interaction between functionalized CFs and hyperbranched polymers. The amidated CFs were prepared by transformation of hydroxyl to acylamino through a one-step amidation. By introducing amidated CFs, amidated CFs self-healing polymer composites (called AD-CF) exhibited many desirable characteristics compared to pure polymer composites, such as a better elasticity, lower healing temperatures, and higher self-healing efficiencies. The stress-strain test was selected to carefully study the self-healing property of the AD-CF. The observed same recovery condition, i.e. without any mechanical breakdown after the 10 sequential cycles of cutting and healing indicates no aging of the AD-CF. The ability of AD-CF to exhibit a soft state and rapid self-healing at room temperature makes it possible for much wider applications.

10.
J Nanosci Nanotechnol ; 20(5): 3164-3173, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31635661

RESUMEN

The graphene/Fe3O4 (GN/Fe3O4) nanocomposites used as electrode of supercapacitors were prepared by chemical reduction-high temperature treatment. The Fe3O4 with uniform size regularly decorate on the surface of graphene. According to the charge and discharge test, the GN/Fe3O4-0.05 electrode has the good mass specific capacitance (265.6 F/g) at a current density of 0.5 A/g. When the power density is 20.27 kW/kg, the energy density reaches 11.26 Wh/kg. Finally, the button supercapacitors were assembled used the prepared nanocomposites as electrodes. The nanocomposites exhibit stable capacitance efficiency after 100 cycles of charging and discharging. The capacitance efficiency still exceeds 80% after 500 cycles of charging and discharge, indicating that the nanocomposite has excellent cycle stability.

11.
ACS Appl Mater Interfaces ; 11(37): 33770-33780, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31366197

RESUMEN

TiO2 nanorod (NR) array for perovskite solar cells (PSCs) has attained great importance due to its superb power conversion efficiency (PCE) compared to that of the traditional mesoporous TiO2 film. A TiO2 compact layer for the growth of TiO2 NR array via spin-coating cannot meet the requirements for efficient NR-based PSCs. Herein, we have developed and demonstrated the insertion of a bifunctional extrathin TiO2 interlayer (5 nm) by atomic layer deposition (ALD) at the interface of the fluorine-doped tin oxide (FTO)/TiO2 compact layer to achieve alleviated electron exchange and a reduced energetic barrier. Thus, an accelerated extraction of electrons from TiO2 NR arrays via the compact layer and their transfer to the FTO substrate can improve the PSC efficiency. The thickness of the spin-coated TiO2 compact layer on the ALD-deposited TiO2 layer is spontaneously optimized. Finally, an outstanding efficiency of 20.28% has been achieved from a champion PSC with negligible hysteresis and high reliability. To the best of our knowledge, this is the first study demonstrating the superiority of TiO2-NR-based PSCs withstanding the dry heat and thermal cycling tests. The results are of great importance for the preparation of efficient and durable PSCs for real-world applications.

12.
ACS Appl Mater Interfaces ; 11(28): 25465-25473, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31268646

RESUMEN

Graphene presents an extremely ultra-high thermal conductivity, well above other known thermally conductive fillers. However, graphene tends to aggregate easily due to its strong intermolecular π-π interaction, resulting in poor dispersion in the polymer matrix. In this study, silver nanoparticles anchored reduced graphene oxide (Ag/rGO) were first prepared using one-pot synchronous reduction of Ag+ and GO solution via glucose. The thermally conductive (Ag/rGO)/polyimide ((Ag/rGO)/PI) nanocomposites were then obtained via electrospinning the in situ polymerized (Ag/rGO)/polyamide electrospun suspension followed by a hot-press technique. The thermal conductivity (λ), glass transition temperature (Tg), and heat resistance index (THRI) of the (Ag/rGO)/PI nanocomposites all increased with increasing the loading of Ag/rGO fillers. When the mass fraction of Ag/rGO (the weight ratio of rGO to Ag was 4:1) fillers was 15%, the corresponding (Ag/rGO)/PI nanocomposites showed a maximum λ of 2.12 W/(m K). The corresponding Tg and THRI values were also enhanced to 216.1 and 298.6 °C, respectively. Furthermore, thermal conductivities calculated by our established improved thermal conduction model were relatively closer to the experimental results than the results obtained from other classical models.

13.
Nanomaterials (Basel) ; 9(7)2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31266249

RESUMEN

To evaluate the influence of transition metal substituents on the characteristics of CH3NH3PbI3/TiO2, we investigated the geometrical and electronic properties of transition metal-substituted CH3NH3PbI3/TiO2 by first-principles calculations. The results suggested that the substitution of Ti4+ at the five-fold coordinated (Ti5c) sites by transition metals is energetically favored. The substituted interface has enhanced visible light sensitivity and photoelectrocatalytic activity by reducing the transition energies. The transition metal substitution can effectively tune the band gap of the interface, which significantly improves the photo-reactivity. The substituted systems are expected to be more efficient in separating the photo-generated electrons-holes and active in the visible spectrum.

14.
ACS Appl Mater Interfaces ; 11(24): 21904-21914, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31124646

RESUMEN

Recently, a paper-based (PB) strain sensor has turned out to be an ideal substitute for the polymer-based one because of the merits of renewability, biodegradability, and low cost. However, the hygroexpansion and degradation of the paper after absorbing water are the great challenges for the practical applications of the PB strain sensor. Herein, the superhydrophobic electrically conductive paper was fabricated by simply dip-coating the printing paper into the carbon black (CB)/carbon nanotube (CNT)/methyl cellulose suspension and hydrophobic fumed silica (Hf-SiO2) suspension successively to settle the problem. Because of the existence of ultrasensitive microcrack structures in the electrically conductive CB/CNT layer, the sensor was capable of detecting an ultralow strain as low as 0.1%. During the tension strain range of 0-0.7%, the sensor exhibited a gauge factor of 7.5, almost 3 times higher than that of the conventional metallic-based sensors. In addition, the sensor displayed frequency-independent and excellent durability and reproductivity over 1000 tension cycles. Meanwhile, the superhydrophobic Hf-SiO2 layer with a micro-nano structure and low surface energy endowed the sensor with outstanding waterproof and self-cleaning properties, as well as great sustainability toward cyclic strain and harsh corrosive environment. Finally, the PB strain sensor could effectively monitor human bodily motions such as finger/elbow joint/throat movement and pulse in real time, especially for the wet or rainy conditions. All these pave way for the fabrication of a high-performance PB strain sensor.

15.
J Colloid Interface Sci ; 542: 159-167, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30739007

RESUMEN

Reduced graphene oxide modified by hyperbranched polyamine-ester (RGO-HBPE) liquids was successfully fabricated through the surface chemical engineering and tested for serving as a solvent-free novel lubricant. Structural characterization, dispersibility and rheology behavior of the lubricant and the related frication performance on steel plate were investigated thoroughly. The results manifest that the RGO-HBPE exhibited good dispersity in distilled water and liquid behavior without any solvent at ambient temperature. And this RGO-HBPE liquids could be directly introduced onto the surface of steel plate as lubricants without any additional base oil. Tribological results and the proposed lubricating mechanism of RGO-HBPE imply that the fluidity of RGO-HBPE is favorable for lubrication and is crucial to reduce the friction coefficient. The spontaneous flow of RGO-HBPE provide a spreading effect to form the lubricating film. The specific spreading effect of RGO-HBPE and the synergistic lubricating effect between HBPE and graphene demonstrate that RGO-HBPE could be directly used as promising candidates for lubricants in nowadays moving machines.

16.
J Nanosci Nanotechnol ; 19(2): 810-818, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30360157

RESUMEN

Hydroxyapatite (HA) nanocoating was electrodeposited on the surface mechanical attrition treated (SMATed) AZ31 magnesium alloy. Phases, morphologies and the adhesion of coating were characterized by X-ray diffraction, scanning electron microscopy (SEM) and 3D optical profiler. The corrosion resistance of the HA coating was tested by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the HA coating on SMATed sample had a better crystallization than that on original one. The thickness of HA coating increased from 25 to 40 µm. The bonding strength between HA coating and SMATed substrate was higher than that between the coating and untreated counterpart. Potentiodynamic polarization and EIS demonstrated that the corrosion current density of HA coating on SMATed substrate decreased by 30.84% than that on original. The corrosion potential shifted 80.3 mV to the positive direction. The corrosion resistance of coatings on SMATed sample was significantly enhanced. The immersion experiments showed that the HA coatings on SMATed sample exhibited a better biological activity.

17.
J Nanosci Nanotechnol ; 19(2): 839-849, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30360161

RESUMEN

B, N-codoped titania mesoporous crystals were prepared by the sol-gel method followed by a molten nitrate process to modify the sample morphology. The composition, morphology and microstructure of the obtained samples were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscope (XPS), Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). Fourier Transform Infrared spectroscopy (FTIR) revealed weak complex vibrations between the Ti-O oxide species and the unsaturated sites (Ti3+) through the incorporation of hydroxyl groups, which was not observed in the bulk titania (B-N-TiO2). The photocatalytic reactivity of boron-nitrogen codoped TiO2 was examined for the removal of methylene blue (MB) under visible light irradiation. The nitrates treated B-doped TiO2 exhibited better photocatalytic activity for dye degradation than that of B-doped TiO2 and nitrates treated TiO2. The best performance was obtained in the sample treated at a calcination temperature of 550 °C.

18.
Nanoscale ; 11(1): 50-59, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30534796

RESUMEN

Urchin-like NiO-NiCo2O4 microspheres with heterostructures were successfully synthesized through a facile hydrothermal method, followed by thermal treatment. The unique structure of NiO-NiCo2O4 with the synergetic effect between NiCo2O4 and NiO, and the heterostructure favour the catalytic activity towards Li-O2 batteries. NiCo2O4 is helpful for boosting both the oxygen reduction reaction and oxygen evolution reaction for the Li-O2 batteries and NiO is likely to promote the decomposition of certain by-products. The special urchin-like morphology facilitates the continuous oxygen flow and accommodates Li2O2. Moreover, benefitting from the heterostructure, NiO-NiCo2O4 microspheres are able to promote the transport of Li ions and electrons to further improve battery performance. Li-O2 batteries utilizing a NiO-NiCo2O4 microsphere electrode show a much higher specific capacity and a lower overpotential than those with a Super P electrode. Moreover, they exhibit an enhanced cycling stability. The electrode can be continuously discharged and charged without obvious terminal voltage variation for 80 cycles, as the discharge capacity is restricted at 600 mA h g-1, suggesting that NiO-NiCo2O4 is a promising catalyst for Li-O2 batteries.

19.
Nanoscale ; 10(43): 20414-20425, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30377681

RESUMEN

Nickel selenide (NiSe) nanoparticles uniformly supported on graphene nanosheets (G) to form NiSe-G nanohybrids were prepared by an in situ hydrothermal process. The uniform distribution of NiSe on graphene bestowed the NiSe-G nanohybrid with faster charge transport and diffusion along with abundant accessible electrochemical active sites. The synergistic effect between NiSe nanoparticles and graphene nanosheets for supercapacitor applications was systematically investigated for the first time. The freestanding NiSe-G nanohybrid electrode exhibited better electrochemical performance with a high specific capacitance of 1280 F g-1 at a current density of 1 A g-1 and a capacitance retention of 98% after 2500 cycles relative to that of NiSe nanoparticles. Furthermore, an asymmetric supercapacitor device assembled using the NiSe-G nanohybrid as the positive electrode, activated carbon as the negative electrode and an electrospun PVdF membrane containing 6 M KOH as both the separator and the electrolyte delivered a high energy density of 50.1 W h kg-1 and a power density of 816 W kg-1 at an extended operating voltage of 1.6 V. Thus, the NiSe-G nanohybrid can be used as a potential electrode material for high-performance supercapacitors.

20.
Nanoscale ; 10(9): 4194-4201, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29446418

RESUMEN

The carbon nanotube aerogel (CNA) with an ultra-low density, three-dimensional network nanostructure, superior electronic conductivity and large surface area is being widely employed as a catalytic electrode and catalytic support. Impressively, dye-sensitized solar cells (DSSCs) assembled with a CNA counter electrode (CE) achieved a maximum power conversion efficiency (PCE) of 8.28%, which exceeded that of the conventional platinum (Pt)-based DSSC (7.20%) under the same conditions. Furthermore, highly dispersed CoS2 nanoparticles endowed with excellent intrinsic catalytic activity were hydrothermally incorporated to form a CNA-supported CoS2 (CNA-CoS2) CE, which was due to the large number of catalytically active sites and sufficient connections between CoS2 and the CNA. The electrocatalytic ability and stability were systematically evaluated by cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and Tafel polarization, which confirmed that the resultant CNA-CoS2 hybrid CE exhibited a remarkably higher electrocatalytic activity toward I3- reduction, and faster ion diffusion and electron transfer than the pure CNA CE. Such cost-effective DSSCs assembled with an optimized CNA-CoS2 CE yielded an enhanced PCE of 8.92%, comparable to that of the cell fabricated with the CNA-Pt hybrid CE reported in our published literature (9.04%). These results indicate that the CNA-CoS2 CE can be considered as a promising candidate for Pt-free CEs used in low-cost and high-performance DSSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...