Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(16): 8028-8035, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38546273

RESUMEN

Two-dimensional (2D) chromium-based self-intercalated materials Cr1+nX2 (0 ≤ n ≤ 1, X = S, Se, Te) have attracted much attention because of their tunable magnetism with good environmental stability. Intriguingly, the magnetic and electrical properties of the materials can be effectively tuned by altering the coverage and spatial arrangement of the intercalated Cr (ic-Cr) within the van der Waals gap, contributing to different stoichiometries. Several different Cr1+nX2 systems have been widely investigated recently; however, those with the same stoichiometric ratio (such as Cr1.25Te2) were reported to exhibit disparate magnetic properties, which still lacks explanation. Therefore, a systematic in situ study of the mechanisms with microscopy techniques is in high demand to look into the origin of these discrepancies. Herein, 2D self-intercalated Cr1+nSe2 nanoflakes were synthesized as a platform to conduct the characterization. Combining scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM), we studied in depth the microscopic structure and local electronic properties of the Cr1+nSe2 nanoflakes. The self-intercalation mechanism of ic-Cr and local stoichiometric-ratio variation in a Cr1+nSe2 ultrathin nanoflake is clearly detected at the nanometer scale. Scanning tunneling spectroscopy (STS) measurements indicate that Cr1.5Se2/Cr2Se2 and Cr1.25Se2 exhibit conductive and semiconductive behaviors, respectively. The STM tip manipulation method is further applied to manipulate the microstructure of Cr1+nSe2, which successfully produces clean zigzag-type boundaries. Our systematic microscopy study paves the way for the in-depth study of the magnetic mechanism of 2D self-intercalated magnets at the nano/micro scale and the development of new magnetic and spintronic devices.

2.
Microb Biotechnol ; 17(1): e14380, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38084800

RESUMEN

Rapid identification of pathogens is critical for early and appropriate treatment of bloodstream infections. The various culture-independent assays that have been developed often have long turnaround times, low sensitivity and narrow pathogen coverage. Here, we propose a new multiplex PCR assay, MeltArray, which uses intact microbial cells as the source of genomic DNA (gDNA). The successive steps of the MeltArray assay, including selective lysis of human cells, microbial cell sedimentation, microbial cellular DNA extraction, target-specific pre-amplification and multiplex PCR detection, allowed the detection of 35 major bloodstream infectious pathogens in whole blood within 5.5 h. The limits of detection varied depending on the pathogen and ranged from 1 to 5 CFU/mL. Of 443 blood culture samples, including 373 positive blood culture samples and 70 negative blood culture samples, the MeltArray assay showed a sensitivity of 93.8% (350/373, 95% confidence interval [CI] = 90.7%-96.0%), specificity of 98.6% (69/70, 95% CI = 91.2%-99.9%), positive predictive value of 99.7% (95% CI = 98.1%-99.9%), and negative predictive value of 75.0% (95% CI = 64.7%-83.2%). The MeltArray detection results of 16 samples differed from MALDI-TOF and were confirmed by Sanger sequencing. Further testing of 110 whole blood samples from patients with suspected bloodstream infections using blood culture results revealed that the MeltArray assay had a clinical sensitivity of 100% (9/9, 95% CI = 62.8%-100.0%), clinical specificity of 74.5% (70/94, 95% CI = 64.2%-82.7%), positive predictive value of 27.3% (95% CI = 13.9%-45.8%), and negative predictive value of 100.0% (95% CI = 93.5%-100.0%). Compared with metagenomic next-generation sequencing, the MeltArray assay displayed a positive agreement of 85.7% (6/7, 95% CI = 42.0%-99.2%) and negative agreement of 100.0% (4/4, 95% CI = 39.6%-100.0%). We conclude that the MeltArray assay can be used as a rapid and reliable tool for direct identification of pathogens in bloodstream infections.


Asunto(s)
Sepsis , Humanos , Sensibilidad y Especificidad , Sepsis/diagnóstico , Reacción en Cadena de la Polimerasa Multiplex/métodos , ADN , Espectrometría de Masas
3.
Adv Mater ; 36(14): e2312425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38146671

RESUMEN

2D transition metal dichalcogenides (TMDCs) are considered as promising materials in post-Moore technology. However, the low photoluminescence quantum yields (PLQY) and single carrier polarity due to the inevitable defects during material preparation are great obstacles to their practical applications. Here, an extraordinary defect engineering strategy is reported based on first-principles calculations and realize it experimentally on WS2 monolayers by doping with IIIA atoms. The doped samples with large sizes possess both giant PLQY enhancement and effective carrier polarity modulation. Surprisingly, the high PL emission maintained even after one year under ambient environment. Moreover, the constructed p-n homojunctions shows high rectification ratio (≈2200), ultrafast response times and excellent stability. Meanwhile, the doping strategy is universally applicable to other TMDCs and dopants. This smart defect engineering strategy not only provides a general scheme to eliminate the negative influence of defects, but also utilize them to achieve desired optoelectronic properties for multifunctional applications.

4.
Nano Lett ; 22(14): 5997-6003, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35839083

RESUMEN

As a lattice interference effect, moiré superlattices feature a magnification effect that they respond sensitively to both the extrinsic mechanical perturbations and intrinsic atomic reconstructions. Here, using scanning tunneling microscopy and spectroscopy, we observe that long-wavelength WS2 superlattices are reconstructed into various moiré morphologies, ranging from regular hexagons to heavily deformed ones. We show that a dedicated interplay between the extrinsic nonuniform heterostrain and the intrinsic atomic reconstruction is responsible for this interesting moiré structure evolution. Importantly, the interplay between these two factors also introduces a local inhomogeneous intralayer strain within a moiré. Contrary to the commonly reported electronic modulation that occurred at the valence band edge due to interlayer hybridization, we find that this local intralayer strain induces a strong modulation at K point of the conduction band, reaching up to 300 meV in the heavily deformed moiré. Our microscopic explorations provide valuable information in understanding the intriguing physics in TMD moirés.

5.
Fish Physiol Biochem ; 48(6): 1717-1735, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35879492

RESUMEN

The purpose of this study was to explore the beneficial effects of sea buckthorn polysaccharide (SP) on lipid metabolism, liver, and intestinal health in zebrafish fed with high-fat diet (HFD). The zebrafish were fed with regular diet (RD), HFD, and HFD supplemented with 2 g/kg (HFD_2SP) and 4 g/kg (HFD_4SP) of SP, respectively. Growth, serum biochemistry, histopathology, expression of genes involved in lipid metabolism, inflammation, oxidative stress and tight junction, and changes in intestinal microbiota were detected. Results showed that adding 2 and 4 g/kg of SP in the HFD significantly improved the survival rate of zebrafish; reduced the levels of serum triglyceride (TG), total cholesterol (TC), aspartate aminotransferase (AST), and alanine transaminase (ALT); and alleviated the lipid accumulation in the liver of zebrafish. Furthermore, SP significantly enhanced the antioxidant capacity of liver and intestine by up-regulating the expression of Nrf2 and Cu/Zn-SOD and alleviated liver and intestinal inflammation induced by HFD through up-regulating the expression of TGF-ß1 and suppressing the expression of P38MAPK, IL-8, and IL-1ß. Especially, dietary SP normalized intestinal microbiota imbalance caused by HFD and inhibited the proliferation of harmful bacteria, i.e., Mycobacterium, but promoted the proliferation of intestinal beneficial bacteria, i.e., Cetobacterium. In summary, 2 and 4 g/kg of dietary SP significantly reduced lipid accumulation, alleviated inflammation and oxidative stress, and normalized the imbalance of intestinal microbiota induced by HFD and consequently improved the survival rate of zebrafish.


Asunto(s)
Microbioma Gastrointestinal , Hippophae , Animales , Pez Cebra , Dieta Alta en Grasa , Inflamación/genética , Hígado/metabolismo , Estrés Oxidativo , Metabolismo de los Lípidos , Polisacáridos/farmacología , Lípidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...