Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 45(5): 2622-2630, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629526

RESUMEN

A typical particulate matter pollution process occurred from October 9 to 17,2018,in Langfang,and 99 types of volatile organic compounds (VOCs) were monitored by using ZF-KU-1007. The characteristics of VOCs,formation potential of secondary organic aerosol (SOA),and source of VOCs were systematically analyzed. The results showed that the maximum concentration of PM2.5 was 198 µg·m-3 during the pollution process and was 2.64 times the National Ambient Air Quality Standard (GB 3095-2012). The average concentration of VOCs was 56.8×10-9,127.8×10-9,and 72.5×10-9 in the early,middle,and late stages of the pollution process,respectively,and the concentration of VOCs increased significantly in the middle stage. The formation potential of SOA was significantly positively correlated with PM2.5,and the contribution of aromatic hydrocarbon for SOA was larger and significantly correlated with the concentration of PM2.5. In the middle pollution stage,SOA increased,and the contribution ratio of aromatic hydrocarbon increased significantly. Conversely,the contribution of alkanes and olefin decreased significantly,which showed that aromatic hydrocarbons,namely benzene series,were the dominant species of SOA generation and had a great influence on the pollution process. Benzene,toluene,m-/p-xylene,o-xylene,and ethylbenzene and nonane,n-undecane,and methylcyclohexane were the priority control species in this pollution process. Solvent use source and motor vehicle emission source (gasoline and diesel vehicles) were the main sources affecting the concentration of VOCs during the autumn pollution process of Langfang,among which the contribution of gasoline vehicle emissions increased significantly in the middle pollution contribution and was the key control source.

2.
Huan Jing Ke Xue ; 43(7): 3463-3472, 2022 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-35791531

RESUMEN

Continuous sampling using the tank sampling method were conducted in Changsha, Zhuzhou, and Xiangtan cities from August 18 to 27, 2020, and 106 VOCs species were analyzed using GC-MS analysis. Then, the regional VOCs concentrations, generation potential, and source of VOCs were studied. The results showed that the average φ(VOCs) was (20.5±10.5)×10-9 in the Changsha-Zhuzhou-Xiangtan area, in which OVOCs (33.5%) and alkanes (28.2%) accounted for the highest proportion. The ozone formation potential (OFP) of VOCs was 118.5 µg·m-3, and the contributions of aromatic hydrocarbons, olefin, and OVOCs to OFP were 37.4%, 24.2%, and 23.6%, respectively. The average secondary organic aerosol formation potential (SOAp) of the VOCs was 0.5 µg·m-3, and the contribution of aromatic hydrocarbons to SOAp was 97.0%, among which C8 aromatic hydrocarbons contributed 41.7%. Toluene, m/p-xylene, and o-xylene were the common dominant species that contributed significantly to OFP and SOAp. The characteristic ratio results showed that VOCs in Changsha were relatively influenced by industrial processes and solvent use, whereas Zhuzhou and Xiangtan were more affected by coal and biomass combustion. The PMF results showed that the VOCs mainly came from vehicle exhaust and oil and gas volatilization (27.2%), coal and biomass combustion (23.7%), industrial processes (20.4%), solvent use (17.2%), and natural sources (11.5%) in the Changsha-Zhuzhou-Xiangtan area.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Monitoreo del Ambiente , Ozono/análisis , Solventes/análisis , Compuestos Orgánicos Volátiles/análisis
3.
Huan Jing Ke Xue ; 42(10): 4632-4640, 2021 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-34581105

RESUMEN

A total of 99 volatile organic compound(VOC) species were detected the Langfang development zones based on continuous monitoring using a ZF-PKU-1007 between August 25 and September 30, 2018. The concentrations, reactivity, and sources of VOCs were studied under different O3 concentrations using compositional analysis. The results showed that the average VOCs concentration during the research period was(75.17±38.67)×10-9, and was(112.33±30.96)×10-9, (66.25±34.84)×10-9 on pollution days and cleaning days, respectively(VOCs concentrations were 69.6% higher on pollution days). The contribution of VOCs species to the ozone formation potential(OFP) were ranked in the order aldehydes > aromatics > alkenes > alkanes. In the case of L·OH, the main contributions were from aromatics(30.0%) and alkenes(25.8%) on pollution days, while the contribution from aromatic alkenes(29.8%) was a slightly higher than aromatics(28.0%) on cleaning days. By applying the positive matrix factorization(PMF) model, five major VOCs sources were extracted, namely vehicle emissions(34.4%), solvent usage and evaporation(31.7%), the petrochemical industry(15.7%), combustion(11.1%), and plant emissions(7.9%). The contributions of solvent usage and evaporation and plant emission sources on pollution days were 13.1% and 1.2% higher than on cleaning days, respectively, which was likely due to relatively higher temperatures on these days. Therefore, vehicle emissions and solvent usage and evaporation should be priorities in VOCs control strategies for the Langfang development zones between August to September.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Ozono/análisis , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
4.
Brain Behav ; 11(1): e01949, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33201600

RESUMEN

INTRODUCTION: Recent animal studies showed that isoflurane exposure may lead to the disturbance of hippocampal neurogenesis and later cognitive impairment. However, much less is known about the effect of isoflurane exposure on the neurons generated form tertiary dentate matrix, even though a great increase of granule cell population during the infantile period is principally derived from this area. METHODS: To label the new cells originated from the tertiary dentate matrix, the mice were injected with BrdU on postnatal day 6 (P6). Then, the mice were exposed to isoflurane for 4 hr at 1, 8, 21, and 42 days after BrdU injection, and the brains were collected 24 hr later. The loss of newly generated cells/neurons with different developmental stage was assessed by BrdU, BrdU + DCX, BrdU + NeuN, or BrdU + Prox-1 staining, respectively. RESULTS: We found that the isoflurane exposure significantly decreased the numbers of nascent cells (1 day old) and mature neurons (42 days old), but had no effect on the immature (8 days old) and early mature neurons (8 and 21 days old, respectively). CONCLUSION: The results suggested isoflurane exposure exerts the neurotoxic effects on the tertiary dentate matrix-originated cells with an age-defined pattern in mice, which partly explain the cognitive impairment resulting from isoflurane exposure to the young brain.


Asunto(s)
Isoflurano , Animales , Proliferación Celular , Giro Dentado , Proteína Doblecortina , Hipocampo , Isoflurano/toxicidad , Ratones , Neurogénesis , Neuronas
5.
Huan Jing Ke Xue ; 39(9): 4026-4033, 2018 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-30188042

RESUMEN

Heavy pollution events frequently occur during fall and winter seasons in northern areas. In order to understand the characteristics and chemical composition of PM2.5 during heavy pollution in winter in Liaocheng City, ambient PM2.5 samples were collected between January 7-11,2016. Mass concentration, water-soluble ions, carbonaceous species, and elements were analyzed, as well as the causes of pollution. Results showed that PM2.5 mass concentration was 238.3 µg·m-3 with the trend clearly that of an inverted V; this concentration represents exceedance of the National Ambient Air Quality Standard (GB 3095-2012) by more than 2.2 times. NO3-, SO42-, and NH4+(SNA)were the main water-soluble ions. As pollution increased or decreased, NH4+, SO42-, NO3-, and Cl- exhibited the same trend, which contrasted with that of Ca2+. During the peak of pollution, NH4+, NO3-, and SO42- concentrations were 48.96, 68.45, and 80.55 µg·m-3, with these representing levels 6.29, 7.31, and 7.84 times those of the initial stage, respectively. During the pollution event, OC and EC concentration variation ranges were 20.8-60.2 µg·m-3, and 3.0-7.5 µg·m-3, respectively. The concentration of OC was significantly higher than that of EC and the variation amplitude was significantly larger. During the event, the mass concentrations of 27 inorganic elements on each day were 10.2, 22.4, 16.0, 19.6, and 8.2 µg·m-3, respectively. Enrichment factors (EF) of all elements were less than 10, indicating lack of enrichment and showing that sources were mainly natural. PM2.5 mass concentration reconstruction results showed that organic matter (OM), SO42-, and NO3- were major components, followed by NH4+, crustal material, and other ions. EC and trace element content was relatively low. As PM2.5 pollution worsened, secondary inorganic salt (NH4+, SO42-, NO3-) concentrations and proportions increased, OM concentration increased but its proportion decreased, while crustal material concentration and proportion both decreased, showing that secondary inorganic conversion was the main cause of this pollution event, mainly driven by coal and motor vehicle emissions.

6.
J Bacteriol ; 195(8): 1735-40, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23396907

RESUMEN

Germination of Bacillus subtilis spores can be triggered by the binding of specific nutrients, called germinants, to germinant receptors (GRs) in the spore's inner membrane. This interaction eventually initiates, with variable time delays, the release of dipicolinic acid and cations from the spore core--a key step in spore germination. The kinetics of this process are highly heterogeneous for individual spores. In this work, we sought to investigate how the germination heterogeneity was controlled. In particular, we tested whether the rates of germination were determined by GR levels, which vary from spore to spore due to stochastic gene expression. Both the expression levels of GRs and the germination rate were measured in single spores, and the experimental results were compared to theoretical predictions. Our results indicated that the variation in the expression levels of GRs was not the primary factor that controls spore germination heterogeneity. Two alternative hypotheses are discussed in light of this experimental discovery.


Asunto(s)
Bacillus subtilis/metabolismo , Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Receptores de Superficie Celular/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Membrana Celular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Ácidos Picolínicos , Receptores de Superficie Celular/genética , Esporas Bacterianas , Procesos Estocásticos , Factores de Tiempo
7.
Phys Rev Lett ; 99(11): 116801, 2007 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17930458

RESUMEN

We report the observation of a zero-differential resistance state (ZDRS) in response to a direct current above a threshold value I>I th applied to a two-dimensional system of electrons at low temperatures in a strong magnetic field. Entry into the ZDRS, which is not observable above several Kelvins, is accompanied by a sharp dip in the differential resistance. Additional analysis reveals an instability of the electrons for I>I th and an inhomogeneous, nonstationary pattern of the electric current. We suggest that the dominant mechanism leading to the new electron state is a redistribution of electrons in energy space induced by the direct current.

8.
Phys Rev Lett ; 97(22): 226807, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17155830

RESUMEN

Rectification of microwave radiation by asymmetric ballistic dot is studied at different frequencies (1-40 GHz), temperatures, and magnetic fields. Dramatic reduction of the rectification is found in magnetic fields at which the cyclotron radius of electron orbits at the Fermi level is less than the size of the dot. With respect to the magnetic field, both symmetric and antisymmetric contributions to the rectification are presented. The symmetric part changes significantly with microwave frequency omega at omegatau_{f}>/=1, where tau_{f} is the time of the ballistic electron flight across the dot. The results lead consistently towards the ballistic origin of the effect, and can be explained by strongly nonlocal electron response to the microwave electric field, which affects both speed and direction of the electron motion inside the dot.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...