Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Cell Death Dis ; 15(4): 278, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637559

RESUMEN

Myelodysplastic syndromes (MDS) are a heterogeneous group of pre-leukemic hematopoietic disorders characterized by cytopenia in peripheral blood due to ineffective hematopoiesis and normo- or hypercellularity and morphologic dysplasia in bone marrow (BM). An inflammatory BM microenvironment and programmed cell death of hematopoietic stem/progenitor cells (HSPCs) are thought to be the major causes of ineffective hematopoiesis in MDS. Pyroptosis, apoptosis and necroptosis (collectively, PANoptosis) are observed in BM tissues of MDS patients, suggesting an important role of PANoptosis in MDS pathogenesis. Caspase 8 (Casp8) is a master regulator of PANoptosis, which is downregulated in HSPCs from most MDS patients and abnormally spliced in HSPCs from MDS patients with SRSF2 mutation. To study the role of PANoptosis in hematopoiesis, we generated inducible Casp8 knockout mice (Casp8-/-). Mx1-Cre-Casp8-/- mice died of BM failure within 10 days of polyI:C injections due to depletion of HSPCs. Rosa-ERT2Cre-Casp8-/- mice are healthy without significant changes in BM hematopoiesis within the first 1.5 months after Casp8 deletion. Such mice developed BM failure upon infection or low dose polyI:C/LPS injections due to the hypersensitivity of Casp8-/- HSPCs to infection or inflammation-induced necroptosis which can be prevented by Ripk3 deletion. However, impaired self-renewal capacity of Casp8-/- HSPCs cannot be rescued by Ripk3 deletion due to activation of Ripk1-Tbk1 signaling. Most importantly, mice transplanted with Casp8-/- BM cells developed MDS-like disease within 4 months of transplantation as demonstrated by anemia, thrombocytopenia and myelodysplasia. Our study suggests an essential role for a balance in Casp8, Ripk3-Mlkl and Ripk1-Tbk1 activities in the regulation of survival and self-renewal of HSPCs, the disruption of which induces inflammation and BM failure, resulting in MDS-like disease.


Asunto(s)
Síndromes Mielodisplásicos , Animales , Humanos , Ratones , Trastornos de Fallo de la Médula Ósea/complicaciones , Caspasa 8/genética , Caspasa 8/metabolismo , Inflamación/metabolismo , Ratones Noqueados , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo
2.
Int J Cardiovasc Imaging ; 40(4): 887-895, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38265540

RESUMEN

PURPOSE: Study aims to investigate the consistency of delayed enhancement cardiac magnetic resonance imaging (DE-CMR) and 18F-FDG PET myocardial imaging in evaluating myocardial viability before CABG. METHODS: The study analyzed data from 100 patients who were examined with DE-CMR, PET imaging, and echocardiography before and after CABG. All subjects were followed up for 6-12 month post- CABG. RESULTS: DE-CMR and PET imaging have high consistency (90.1%; Kappa value = 0.71, p < 0.01) in determining myocardial viability. The degree of delayed enhancement was negatively correlated with the improvement in myocardial contractile function in this segment after revascularization (P < 0.001). The ratio of scarred myocardial segments and total DE score was significantly lower in the improvement group than non-improvement group. Multivariate regression identified that hibernating myocardium (OR = 1.229, 95%CI: 1.053-1.433, p = 0.009) was influencing factor of LVEF improvement after CABG. CONCLUSION: Both imaging techniques are consistent in evaluating myocardial viability. Detecting the number of hibernating myocardium by PET is also important to predict the left heart function improvement after CABG.


Asunto(s)
Puente de Arteria Coronaria , Enfermedad de la Arteria Coronaria , Fluorodesoxiglucosa F18 , Imagen de Perfusión Miocárdica , Miocardio , Tomografía de Emisión de Positrones , Valor Predictivo de las Pruebas , Radiofármacos , Supervivencia Tisular , Función Ventricular Izquierda , Humanos , Masculino , Femenino , Persona de Mediana Edad , Fluorodesoxiglucosa F18/administración & dosificación , Miocardio/patología , Radiofármacos/administración & dosificación , Anciano , Imagen de Perfusión Miocárdica/métodos , Factores de Tiempo , Resultado del Tratamiento , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/cirugía , Enfermedad de la Arteria Coronaria/terapia , Recuperación de la Función , Volumen Sistólico , Reproducibilidad de los Resultados , Aturdimiento Miocárdico/diagnóstico por imagen , Aturdimiento Miocárdico/fisiopatología , Aturdimiento Miocárdico/etiología , Imagen Multimodal , Imagen por Resonancia Magnética , Contracción Miocárdica , Circulación Coronaria , Estudios Retrospectivos
3.
Heliyon ; 10(1): e23951, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38226213

RESUMEN

Non-routine activities such as startup, shutdown, maintenance, and operation commissioning require increased human interaction with the corresponding process. Owing to operator or procedural violations, the risk of accidents can be high during non-routine activities, even though they are performed less frequently. To identify and evaluate the hazards of non-routine processes, an integrated method combining job hazard analysis (JHA), hazard and operability analysis (HAZOP), and deviation degrees is proposed. JHA is applied to break down an operational process into steps, which are further defined as nodes in HAZOP for hazard scenario analysis. The concept of deviation degree is defined by integrating the operational and control function deviations to quantify the deviation analysis. Finally, the heating-furnace startup process in an oil and gas gathering and transmission station was selected to illustrate the proposed integrated method. The results show that this method constitutes a systematical and intuitive approach to identify hazard scenarios and evaluate risks, as well as to establish preventive measures for non-routine processes.

4.
Stem Cell Reports ; 19(1): 100-111, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38101400

RESUMEN

Lymphoid-primed multipotent progenitor (LMPP)-like and granulocyte-monocyte progenitor (GMP)-like leukemia stem cells (LSCs) co-exist in the blood of most patients with acute myeloid leukemia (AML). Complete elimination of both types of LSCs is required to cure AML. Using an MLL-AF9-induced murine AML model, we studied the role of hematopoietic cytokines in the survival of LMPP- and GMP-like LSCs. We found that SCF or FLT3L promotes the survival of LMPP-like LSCs by stimulating Stat5-mediated Mcl1 expression, whereas interleukin-3 (IL-3) or IL-6 induces the survival of GMP-like LSCs by stimulating Stat3/nuclear factor κB (NF-κB)-mediated Bcl2 expression. Functional study demonstrated that, compared to AML cells cultured in IL-3 and IL-6 medium, AML cells in SCF- or Flt3L-only culture are highly clonogenic in in vitro culture and are highly leukemogenic in vivo. Our study suggests that co-inhibition of both STAT5-MCL1 and STAT3/NF-κB-BCL2 signaling might represent an improved treatment strategy against AML, specifically AML cases with a monocytic phenotype and/or FLT3 mutations.


Asunto(s)
Interleucina-3 , Leucemia Mieloide Aguda , Ratones , Humanos , Animales , Interleucina-3/metabolismo , Factor de Transcripción STAT5/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , FN-kappa B/metabolismo , Interleucina-6/metabolismo , Leucemia Mieloide Aguda/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo
5.
Medicine (Baltimore) ; 102(35): e34828, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657056

RESUMEN

BACKGROUND: There have been many studies on MUC7 and bladder cancer (BC) that have been published; however, all sample sizes were not enough which led to their conclusions being based on small samples. Therefore, this meta-analysis aims to systematically analyze the diagnostic value of MUC7 for bladder cancer and provide a scientific basis for the diagnosis of bladder cancer. METHODS: To obtain relevant literature on MUC7 diagnosed bladder cancer, databases such as PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang data, Chongqing VIP, and Chinese Biomedical Literature Database were searched from the establishment of the database to July 11, 2023. According to established inclusion and exclusion criteria, literature was screened and data were extracted. The Quality Assessment of Diagnostic Accuracy Studies 2 was used to evaluate the risk of bias and applicability of included literature. Meta-disc1.4 and Stata12.0 software were used for Meta-analysis. RESULTS: Twelve studies were included, including728 BC patients and 458 non-BC controls. The pooled sensitivity and pooled specificity were 0.74 (95% confidence interval [CI]: 0.71-0.77) and 0.92 (95% CI: 0.90-0.95), respectively. The pooled negative likelihood ratio was 0.27 (95% CI: 0.20-0.36), and the pooled positive likelihood ratio was 9.58 (95% CI: 5.40-17.00). The diagnostic odds ratio was 40.95 (95% CI: 20.31-82.59), and the area under the curve was 0.91 in the overall summary of the receiver operating characteristic curve. CONCLUSION: MUC7 might be a potential biomarker for diagnosing BC. However, more large sample and multicenter studies are needed to prove whether it can be used in clinical diagnosis.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/diagnóstico , Pueblo Asiatico , China , Bases de Datos Factuales , Conocimiento , Mucinas , Proteínas y Péptidos Salivales
6.
Environ Sci Pollut Res Int ; 30(43): 96993-97004, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37584802

RESUMEN

Different maize varieties respond differentially to cadmium (Cd) stress. As the first organ in contact with the soil, the response of the root is particularly important. However, the physiological mechanisms that determine the response are not well defined. Here, we compared the differences in Cd-induced related gene expression, ionic homeostasis, and ultrastructural changes in roots of Cd-tolerant maize variety (XR57) and Cd-sensitive maize variety (LY296), and assessed their effects on Cd uptake and accumulation. Our findings indicate that XR57 absorbed a significantly lower Cd than LY296 did, and that the expression levels of genes related to Cd uptake (ZmNRAMP5 and ZmZIP4) and efflux (ZmABCG4) in the root were consistent with the Cd absorption at the physiological levels. Compared with LY296, the lower Cd concentration in the roots of XR57 caused less interference with the ion balance. Transmission electron microscope images revealed that the roots from XR57 exposed to Cd had developed thicker cell walls than LY296. In addition, the large increase ZmABCC1 and ZmABCC2 expression levels in XR57 mediated the appearance of numerous electron-dense granules in the vacuoles present in the roots. As a result, the high Cd tolerance of XR57 is the result of a multi-level response that involves increased resistance to Cd uptake, a stronger capacity for vacuolar regionalization, and the formation of thicker cell walls. These findings may provide a theoretical basis for maize cultivation in Cd-contaminated areas.


Asunto(s)
Raíces de Plantas , Contaminantes del Suelo , Raíces de Plantas/metabolismo , Zea mays/química , Cadmio/análisis , Transporte Biológico , Suelo/química , Contaminantes del Suelo/análisis
7.
Stem Cell Res Ther ; 14(1): 185, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501095

RESUMEN

BACKGROUND: Acute lung injury is characterized by overwhelmingly elevated PAI-1 in both lung edema fluid and the circulating system. The role of increased PAI-1, encoded by Serpine1 gene, in the regeneration of injured lung epithelium has not been understood completely. This study aimed to investigate the role of Serpine1 in the regulation of alveolar type 2 epithelial cell (AT2) fate in a humanized mouse line carrying diseased mutants (Serpine1Tg). METHODS: Wild-type (wt) and Serpine1Tg AT2 cells were either cultured as monolayers or 3D alveolospheres. Colony-forming assay and total surface area of organoids were analyzed. AT1 and AT2 cells in organoids were counted by immunohistochemistry and fluorescence-activated cell sorting (FACS). To test the potential effects of elevated PAI-1 on the permeability in the epithelial monolayers, we digitized the biophysical properties of polarized AT2 monolayers grown at the air-liquid interface. RESULTS: A significant reduction in total AT2 cells harvested in Serpine1Tg mice was observed compared with wt controls. AT2 cells harvested from Serpine1Tg mice reduced significantly over the wt controls. Spheroids formed by Serpine1Tg AT2 cells were lesser than wt control. Similarly, the corresponding surface area, a readout of re-alveolarization of injured epithelium, was markedly reduced in Serpine1Tg organoids. FACS analysis revealed a significant suppression in the number of AT2 cells, in particular, the CD44+ subpopulation, in Serpine1Tg organoids. A lesser ratio of AT1:AT2 cells in Serpine1Tg organoids was observed compared with wt cultures. There was a significant increase in transepithelial resistance but not amiloride inhibition. CONCLUSIONS: Our study suggests elevated PAI-1 in injured lungs downregulates alveolar epithelial regeneration by reducing the AT2 self-renewal, particularly in the CD44+ cells.


Asunto(s)
Células Epiteliales Alveolares , Inhibidor 1 de Activador Plasminogénico , Ratones , Animales , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Células Cultivadas , Pulmón , Permeabilidad
8.
Materials (Basel) ; 16(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37049210

RESUMEN

In order to improve the brittle characteristics of coral cement-based composites and increase their toughness, an experimental study was carried out on the basic mechanical properties of PVA (polyvinyl alcohol) fiber-reinforced coral cement-based composites, taking into account the fiber content and length-to-diameter ratio (L/D). The results showed that PVA fibers can effectively improve the mechanical properties of concrete, especially its tensile strength. At the same time, PVA fibers improved the damage characteristics of cement-based composites and had obvious toughening and brittleness reduction effects. The PVA fibers, with a volume content of 1.5% and an L/D of 225, had the best performance in reinforcing the overall performance of the coral cement-based composites. Too many PVA fibers or a large length-to-diameter ratio would make it difficult for the fibers to contribute to toughness and cracking resistance and even cause defects in the matrix, reducing the mechanical properties. The tensile stress-strain curves of PVA fiber-reinforced coral cement-based composites were consistent with the trilinear constitutive model curves and showed the tensile characteristic of strain hardening after the occurrence of the main cracks.

9.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3333-3339, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38511372

RESUMEN

Grading seeds based on grain size is an effective measure to improve population regularity degree and increase the yield of summer maize. Taking Denghai 605 as the experimental material, we set up a field experiment with treatments based on grain size: large seeds (L), medium-round seeds (MR), medium-flat seeds (MF), medium-round and medium-flat mixed seeds (MRF), and small seeds (S), with no-grading seeds as control (CK). We investigated seedling emergence rate, population regularity degree (including height, ear height and stem diameter), seedling sturdiness index, photosynthetic characteristics, dry matter accumulation and distribution characteristics, and yield. The results showed that the emergence rate followed an order of L>MR>MRF>MF>CK>S, with that of L treatment differed little from MR, MF and MRF treatments, but being significantly higher than S and CK treatments. Plant height and stem diameter population regularity degree of MRF treatment before seven-leaf stage was not different from those of L, MR, MF and S treatments, but significantly higher than those of CK. At the tasseling stage, all treatments had higher population regularity degree of plant height than other stages. Ear height population regularity degree of L, MR, MF, MRF, and S increased by 11.1%, 10.3%, 9.5%, 7.1%, and 6.4% compared with CK, respectively. The seedling sturdiness index of MRF treatment increased by 36.7% compared with S treatment, but was not significantly different from L treatment. The leaf area index of the L and MRF treatments was significantly higher than that of CK, and both had higher population photosynthetic properties. The population dry matter accumulation showed a pattern as L>MR>MRF>MF>CK>S. There was no significant difference among L, MR, and MRF treatments, but that in L being obviously higher than MF, CK, and S treatments. After seed grading, the number of harvested ears of the L and MRF treatments increased significantly, and the yield were shown as L>MR>MRF>MF>CK>S. There was no difference between the yield of MRF, MR and MF treatments. In conclusion, the performance of L treatment was improved but the number was small. Considering the grading cost and yield, the MRF treatment can save the seed amounts of sowing, realize mechanized sowing and precision sowing.


Asunto(s)
Semillas , Zea mays , Grano Comestible , Hojas de la Planta , Fotosíntesis , Plantones
10.
BMC Plant Biol ; 22(1): 602, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539687

RESUMEN

BACKGROUND: Soil salt stress is a problem in the world, which turns into one of the main limiting factors hindering maize production. Salinity significantly affects root physiological processes in maize plants. There are few studies, however, that analyses the response of maize to salt stress in terms of the development of root anatomy and respiration. RESULTS: We found that the leaf relative water content, photosynthetic characteristics, and catalase activity exhibited a significantly decrease of salt stress treatments. However, salt stress treatments caused the superoxide dismutase activity, peroxidase activity, malondialdehyde content, Na+ uptake and translocation rate to be higher than that of control treatments. The detrimental effect of salt stress on YY7 variety was more pronounced than that of JNY658. Under salt stress, the number of root cortical aerenchyma in salt-tolerant JNY658 plants was significantly higher than that of control, as well as a larger cortical cell size and a lower root cortical cell file number, all of which help to maintain higher biomass. The total respiration rate of two varieties exposed to salt stress was lower than that of control treatment, while the alternate oxidative respiration rate was higher, and the root response of JNY658 plants was significant. Under salt stress, the roots net Na+ and K+ efflux rates of two varieties were higher than those of the control treatment, where the strength of net Na+ efflux rate from the roots of JNY658 plants and the net K+ efflux rate from roots of YY7 plants was remarkable. The increase in efflux rates reduced the Na+ toxicity of the root and helped to maintain its ion balance. CONCLUSION: These results demonstrated that salt-tolerant maize varieties incur a relatively low metabolic cost required to establish a higher root cortical aerenchyma, larger cortical cell size and lower root cortical cell file number, significantly reduced the total respiration rate, and that it also increased the alternate oxidative respiration rate, thereby counteracting the detrimental effect of oxidative damage on root respiration of root growth. In addition, Na+ uptake on the root surface decreased, the translocation of Na+ to the rest of the plant was constrained and the level of Na+ accumulation in leaves significantly reduced under salt stress, thus preempting salt-stress induced impediments to the formation of shoot biomass.


Asunto(s)
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Zea mays/metabolismo , Estrés Oxidativo , Plantas Tolerantes a la Sal/metabolismo , Estrés Salino , Respiración , Raíces de Plantas/metabolismo
11.
Front Microbiol ; 13: 1024686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386656

RESUMEN

Integrated soil-crop management (ISCM) has been shown as an effective strategy to increase efficiency and yield while its soil microbial community structure and function remain unclear. We evaluated changes in soil physicochemical factors, bacterial community structure responses, and the contributions of soil properties and bacterial communities to summer maize-winter wheat yield and GHG emissions through an ISCM experiment [T1 (local smallholder farmers practice system), T2 (improved management system), T3 (high-yield production system), and T4 (optimized management system)], which could provide scientific guidance for sustainable development of soil in summer maize-winter wheat rotation system. The results showed that the optimized ISCM could improve the soil quality, which significantly changed the soil bacterial community structure to reduce GHG emissions and increase yield. The co-occurrence network density of T3 was increased significantly. The Acidobacteria (class) and OM190 (class) were enriched in T2 and T4. The Frankiales (order) and Gaiellales (order) were enriched in T3. However, the changes in different crop growth stages were different. At the wheat jointing stage and maize mature stage, T4 could enhance carbon-related functional groups, such as aromatic hydrocarbon degradation and hydrocarbon degradation, to increase the soil organic carbon content. And at the maize tasseling stage, T4 could enhance nitrogen-related functional groups. And soil bacteria structure and function indirectly affected annual yield and GHG emission. T2 and T4 exhibited a similar soil microbial community. However, the yield and nitrogen use efficiency of T2 were reduced compared to those of T4. The yield of T3 was the highest, but the GHG emission increased and soil pH and nitrogen use efficiency decreased significantly. Therefore, T4 was a suitable management system to improve soil quality and soil bacterial community structure and function to decrease GHG emissions and increase the yield of the summer maize-winter wheat rotation system.

12.
Front Plant Sci ; 13: 1042920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340343

RESUMEN

Extreme rainfall events during the summer maize growth and development periods, which have induced losses in summer maize production. There was a completely randomized block experiment being designed with four treatments: waterlogging for 6 days at the V3 stage (C-W), H2O2-priming + non-waterlogging (H-CK), H2O2-priming + waterlogging for 6 days at the V3 stage (H-W) and control (C-CK). This study investigated the effects of H2O2 priming on yield and photosynthetic parameters of (Zea mays. L) summer maize hybrid DengHai605 (DH605) by measuring the leaf area index (LAI), soil and plant analyzer development (SPAD) value, stomatal morphology, gas exchange parameters, and chlorophyll fluorescence parameters. The results showed that the net photosynthetic rate (Pn) was decreased after waterlogging through the stomatal limitation of CO2 supply and reduction of PSII photochemical efficiency, which led to the decrease in dry matter accumulation and grain yield. H2O2 priming increased the number of opening stomas, the stomatal length, and width, thus increasing Ci by 12.1%, which enhanced the Pn by 37.5%. Additionally, H2O2 priming could improve the energy of dark reaction carbohydrates by increasing the light energy absorption and utilization, alleviating the function of PSII reaction centers, protecting the PSII receptor and donor side, and the electron transport chain. The φEo, φPo, φRo, and Ψo of H-W were increased by 89.9%, 16.2%, 55.4%, and 63.9% respectively, and the φDo was decreased by 23.5%, compared with C-W. Therefore, H2O2 priming significantly enhanced the PSII photochemical efficiency, and increased the CO2 supply in dark reactions to promote carbon assimilation, alleviating the waterlogging-induced damage to maize plant growth and grain yield.

13.
J Exp Clin Cancer Res ; 41(1): 294, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36203205

RESUMEN

The family of ten-eleven translocation dioxygenases (TETs) consists of TET1, TET2, and TET3. Although all TETs are expressed in hematopoietic tissues, only TET2 is commonly found to be mutated in age-related clonal hematopoiesis and hematopoietic malignancies. TET2 mutation causes abnormal epigenetic landscape changes and results in multiple stages of lineage commitment/differentiation defects as well as genetic instability in hematopoietic stem/progenitor cells (HSPCs). TET2 mutations are founder mutations (first hits) in approximately 40-50% of cases of TET2-mutant (TET2MT) hematopoietic malignancies and are later hits in the remaining cases. In both situations, TET2MT collaborates with co-occurring mutations to promote malignant transformation. In TET2MT tumor cells, TET1 and TET3 partially compensate for TET2 activity and contribute to the pathogenesis of TET2MT hematopoietic malignancies. Here we summarize the most recent research on TETs in regulating of both normal and pathogenic hematopoiesis. We review the concomitant mutations and aberrant signals in TET2MT malignancies. We also discuss the molecular mechanisms by which concomitant mutations and aberrant signals determine lineage commitment in HSPCs and the identity of hematopoietic malignancies. Finally, we discuss potential strategies to treat TET2MT hematopoietic malignancies, including reverting the methylation state of TET2 target genes and targeting the concomitant mutations and aberrant signals.


Asunto(s)
Dioxigenasas , Neoplasias Hematológicas , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Neoplasias Hematológicas/genética , Hematopoyesis/genética , Humanos , Oxigenasas de Función Mixta , Mutación , Proteínas Proto-Oncogénicas/genética
14.
Front Plant Sci ; 13: 992311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247586

RESUMEN

In order to explore the physiological mechanism of different yield of summer maize (Zea mays L.) hybrids with different growth duration, a field experiment was conducted to study the growth stage, leaf photosynthetic characteristics, dry matter accumulation (DMA), transport and distribution characteristics and yield of the early maturity hybrid Denghai 518 (DH518) and the mid-late maturity hybrid Denghai 605 (DH605) from 2017 to 2021. The results showed that the yield of DH605 was significantly higher than that of DH518. The growth period of DH518 was 7-10 days shorter and the days of the growth stage of the sowing-silking stage (R1) were 5-6 days shorter compared to that of DH605. The contribution to grain dry matter by leaf and stalk dry matter remobilization (DMRC) of DH518 was significantly higher than that of DH605. There was a significant negative correlation between pre-silking growth days and harvest index (HI). The 13C distribution to grains of DH518 was significantly higher than that of DH605, and the HI and the corresponding contribution of HI to yield was also higher than that of DH605. The light and temperature resource use efficiency from silking to physiological maturity stage of DH605 was significantly higher than that of DH518. The yield per GDD of DH605 increased by 7.25% than that of DH518. At post-silking, the duration of higher leaf area index (DLAI) (>56 days) and active photosynthesis duration (APD) (>50 days) of DH605 were longer compared with that of DH518, and the average plant growth rate was 7.15% higher than that of DH518, which significantly increased the DMA of DH605. Therefore, the significant reduction of DH518 yield compared with DH605 was not due to the shortening of the growth stage of sowing-R1, but the lower light and temperature resource use efficiency from silking to physiological maturity stage.

15.
Plants (Basel) ; 11(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36079601

RESUMEN

Increasing planting density is an effective way to improve maize yield, but high plant populations often cause a lodging problem. This experiment was conducted to investigate the effect of increasing planting density on stalk lodging resistance and grain yield, and to explore the effects on stalk and yield properties of spraying ethephon in densely planted summer maize. The summer maize hybrid, Xundan20 (XD20), was used as experimental material. It was grown by spraying water (CK) or ethephon (E) at BBCH (BASF, Bayer, Ciba-Geigy and Hoechst) 17 under three different planting densities of 60,000 plants ha-1 (L), 75,000 plants ha-1 (M) and 90,000 plants ha-1 (H) in order to explore the possibility of synergistic improvement in stalk lodging resistance and grain yield. The results from this experiment suggested that the gravity center height of densely planted summer maize was significantly increased, the stem diameter, area and number of vascular bundles were significantly decreased and the dry weight per unit internode was significantly decreased, thereby weakening the stalk rind penetration strength and bending performance, resulting in a significant increase in lodging percentage. The ear height was significantly decreased and the SPAD (soil and plant analysis development) and canopy light transmittance were increased after spraying ethephon; then, the internode dry weight per unit length was increased and the stalk rind penetration strength and bending performance were enhanced so as to significantly reduce the lodging percentage and increase the grain yield. The correlation analysis further showed that lodging percentage was significantly negatively correlated with stem diameter, area and number of vascular bundles and stalk bending performance, but there were no strong relationships with grain yield. This suggested that the synergistic improvement in stalk lodging resistance and grain yield was not contradictory. Under the experiment conditions, the effect of spraying ethephon was most significant when the planting density was 90,000 plants ha-1. At the time, the lodging percentage and grain yield were 12.2% and 11,137.5 kg ha-1, which were decreased by 44.6% and increased by 8.0% compared with the control treatment. Scientific chemical regulation could significantly improve the stalk lodging resistance and grain yield of densely planted summer maize.

16.
Front Plant Sci ; 13: 982373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105701

RESUMEN

The application of nitrogen (N) fertilizer combined with nitrification inhibitor is considered to be one of the effective strategies to improve N efficiency and reduce N loss. While the chemical and physical properties of nitrapyrin (CP) in fertilizers have been evaluated to increase N efficiency, a lack of comprehensive evaluation of the effects of adding CP on summer maize yield, environmental benefits and economic income under different fertilization methods. In this study, two fertilization methods were used: split-N application and one-time basal N fertilizer before sowing. The comprehensive effects of N fertilizer with CP on N loss (NH3 volatilization, NO3 - leaching, and N2O emissions), N efficiency, yield and profit under two N application methods were explored. Results showed that under the two N application methods, N fertilizer with CP treatment increased the N efficiency and yield (+3.4%∼+5.7%), significantly reduced the soil NO3 --N content and N2O emissions, while increased NH3 volatilization. Especially, the increase amplitude of NH3 was much less than the decrease amplitude of N2O induced by adding CP. Although split-N application could achieve higher yield and N efficiency, N2O emissions and NH3 volatilization also increased. However, the T1 + N (one-time basal N fertilizer before sowing mixed with CP) achieved the same yield level as T2 treatment (split-N application). Taking agronomic, economic and environmental benefits into consideration, one-time basal N fertilizer before sowing mixed with CP could ensure the target yield, increase economic benefits, maintain soil N content, and reduce N losses. Therefore, optimizing N management is essential to the sustainable development of agriculture.

18.
Plants (Basel) ; 11(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35956462

RESUMEN

In order to explore the effects of nitrapyrin (N-Serve) application on greenhouse gas emission and nitrogen (N) leaching of a waterlogged maize (Zea mays L.) field, we investigated the effects of applying nitrapyrin on soil ammonium (NH4+-N) and nitrate nitrogen (NO3--N) content, nitrous oxide (N2O) fluxes, and the warming potential (GWPN2O) in a waterlogged maize field. The design included three treatments: waterlogging treatment with only urea application (V-3WL), waterlogging treatment with urea and nitrapyrin application (V-3WL+N), and no waterlogging treatment applying only urea (CK). Our results revealed that waterlogging led to the increase of nitrate concentrations across the soil profile, thus potentially increasing N leaching and decreasing N use efficiency. The accumulated N2O emissions increased significantly in waterlogged plots compared to control plots, and maximum N2O emission fluxes occurred during the process of soil drying after waterlogging; this resulted in an increase in GWPN2O and N2O greenhouse gas intensity (GHGIN2O) by 299% and 504%, respectively, compared to those of CK. However, nitrapyrin application was able to reduce N2O emissions. Nitrapyrin application was also good for decreasing GWPN2O and GHGIN2O by 34% and 50%, respectively, compared to V-3WL. In addition, nitrapyrin application was conducive to reduce N leaching and improve N use efficiency, resulting in a yield increase by 34%, compared to that of V-3WL. The application of nitrapyrin helped to mitigate agriculture-source greenhouse effects and N leaching induced by waterlogging, and was a high N-efficient fertilizer method for a waterlogged field.

19.
DNA Repair (Amst) ; 118: 103371, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35930920

RESUMEN

BACH1 (Brca1-Associated C-terminal Helicase) is an important DNA damage response factor, which is involved in DNA damage repair and maintenance of genomic stability. In this study, by using tandem protein affinity purification, we have identified BCLAF1 as a novel functional partner of BACH1. BCLAF1 constitutively interacts with BACH1 regardless of DNA damage. However, in response to DNA damage, along with BACH1, BCLAF1 is recruited to the DNA damage sites and the recruitment of BCLAF1 was regulated by BACH1 and BRCA1. Interestingly, BCLAF1 deficient cells are deficient for DSB-initiated HR, but RAD51 foci formation is intact following IR treatment. Taken together, these findings reveal that BCLAF1 is a functional binding partner of BACH1 playing a key role in DNA damage response.


Asunto(s)
Proteína BRCA1 , Reparación del ADN , Proteína BRCA1/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Inestabilidad Genómica , Humanos , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo
20.
Front Cardiovasc Med ; 9: 893355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35647037

RESUMEN

Mechanical circulatory support (MCS) has become a processing technique used in end-stage heart failure (ESHF) because it can significantly improve survival and quality of life in patients with ESHF as either a transitional support therapy or a permanent replacement therapy before heart transplant. However, various potential complications associated with MCS need to be considered, especially aortic root thrombus formation. It's critical to have an appropriate diagnosis of aortic root thrombus and "watershed" because the prognosis and treatment are different. Both "watershed" and aortic root thrombus formation can be characterized by computed tomography angiography. The CT manifestations of two patients who had MCS device implantation in our hospital (one with intra-aortic balloon pumps + extracorporeal membrane oxygenators, the other with left ventricular assist devices) were reported, and a literature review that recognized of "watershed" phenomenon in the aortic root was conducted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...