Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Sci Rep ; 14(1): 11572, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773298

RESUMEN

Down-polyethylene film material has been introduced for the first time as an excellent non-frame sound absorber, showing a distinctively outstanding performance. It contains down fiber adjacent to each other without firm connection in between, forming a structure of elastic fiber network. The unique structure has broadband response to sound wave, showing non-synchronous vibration in low and middle frequency and synchronous vibration in middle and high frequency. The broadband resonance in middle and high frequency allows the structure to achieve complete sound absorption in resonance frequency band. Moreover, down-polyethylene film material possesses forced vibration, corresponding sound absorption coefficient has been obtained based on vibration theory. The down-film sound absorption material has the characteristics of light weight, soft, environment-friendly, and has excellent broadband sound absorption performance.

2.
Endocrinology ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735763

RESUMEN

Follicle-stimulating hormone (FSH) binds to its membrane receptor (FSHR) in granulosa cells to activate various signal transduction pathways and drive the gonadotropin-dependent phase of folliculogenesis. Poor female reproductive outcomes can result from both FSH insufficiency owing to genetic or non-genetic factors and FSH excess as encountered with ovarian stimulation in assisted reproductive technology (ART), but the underlying molecular mechanisms remain elusive. Herein, we conducted single-follicle and single-oocyte RNA sequencing analysis along with other approaches in an ex vivo mouse folliculogenesis and oogenesis system to investigate the effects of different concentrations of FSH on key follicular events. Our study revealed that a minimum FSH threshold is required for follicle maturation into the high estradiol-secreting preovulatory stage, and such threshold is moderately variable among individual follicles between 5-10 mIU/mL. FSH at 5, 10, 20, and 30 mIU/mL induced distinct expression patterns of follicle maturation-related genes, follicular transcriptomics, and follicular cAMP levels. RNA-seq analysis identified FSH-stimulated activation of G proteins and downstream canonical and novel signaling pathways that may critically regulate follicle maturation, including the cAMP/PKA/CREB, PI3K-AKT/FOXO1, and glycolysis pathways. High FSH at 20 and 30 mIU/mL resulted in non-canonical FSH responses including premature luteinization, high production of androgen and proinflammatory factors, and reduced expression of energy metabolism-related genes in oocytes. Together, this study improves our understanding of gonadotropin-dependent folliculogenesis and provides crucial insights into how high doses of FSH used in ART may impact follicular health, oocyte quality, pregnancy outcome, and systemic health.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38757309

RESUMEN

Flexible nanocomposite dielectrics with inorganic nanofillers exhibit great potential for energy storage devices in advanced microelectronics applications. However, high loading of inorganic nanofillers in the matrix results in an inhomogeneous electric field distribution, thereby hindering the improvement of the energy storage density (Ue) of the dielectrics. Herein, we proposed a strategy that utilized (00l)-oriented barium titanate (BT) single-crystal platelets to fabricate trilayered nanocomposite dielectrics for energy storage applications. The trilayered nanocomposites consisted of two high-permittivity layers of (Ta2O5, Al2O3) codoped TiO2 nanoparticles (Ta-Al@TiO2 nps) dispersed in a poly(vinylidene fluoride) (PVDF) matrix to facilitate large electric displacement and a middle layer of (00l)-oriented BT single-crystal platelets to provide high breakdown strength. Hence, the trilayered PVDF/Ta-Al@TiO2 nps/BT single-crystal platelet nanocomposite film attains an outstanding Ue of 16.9 J cm-3 at 370 kV mm-1, which is ∼625% higher than that of the single-layer PVDF/Ta-Al@TiO2 nps film. Finite element simulation further clarified that the successive inner layer of highly (00l)-oriented BT single-crystal platelets could effectively restrain the propagation of electrical treeing in trilayered nanocomposites. This research offers an effective approach for developing flexible dielectric capacitors with an excellent energy storage performance.

4.
Eur J Mass Spectrom (Chichester) ; : 14690667241252020, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38706124

RESUMEN

This paper presents a newly developed high-performance mobile single-photon ionization time-of-flight mass spectrometry (M-SPI-TOFMS) system for on-line analysis and stereoscopic monitoring of complex gas mixtures. The system is designed for stereoscopic imaging to map the distribution of volatile organic compounds (VOCs) and trace their emission sources in urban areas and industrial parks. It mainly consists of a SPI-TOFMS instrument, a customized commercial vehicle, a meteorological five-parameter monitor with GPS, a high-power generator, and an uninterruptible power supply. The SPI technique, using a 118 nm VUV lamp, can ionize compounds with an ionization potential below 10.78 eV. Mass spectra obtained using this technique show the profiles of various VOCs and some inorganic compounds. The VOCs composition information and mobile location data are simultaneously sent to the GIS software. In GIS software, this data is used for real-time stereoscopic imaging of VOC distribution and precise tracking of VOC movement. The system can achieve a spatial data resolution of 0.69 mm at 25 km/h due to the microsecond detection speed of the M-SPI-TOFMS instrument. The laboratory test provides a rapid overview characterization of benzene, toluene, and xylene. The M-SPI-TOFMS has limits of detection and mass resolution of 33.7 pptv and 1060, respectively. Several field applications were carried out using M-SPI-TOFMS at various locations to identify VOC sources near different factories. The M-SPI-TOFMS system has a navigation monitoring speed of 25 km/h with a time resolution of 1 s. The widespread use of this system will provide accurate data to support environmental management departments in formulating VOCs pollution control policies and improving control efficiency.

5.
Appl Opt ; 63(5): 1377-1384, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38437318

RESUMEN

Optical delay lines have wide applications in terahertz time-domain spectroscopy and optical coherence tomography. In this study, a fast-rotating optical delay line (FRODL) with 24 turntable reflection surfaces was designed. By analyzing the working principle of the FRODL, a mathematical model was established for the nonlinear parameter error of the FRODL delay time. By constructing the polarization Michelson interference system and testing the FRODL structure, the error of actual assembly parameters of the FRODL was approximately 0.015 mm, the actual delay time of the FRODL was greater than 43.5 ps, and the linearity was 99.785%.

6.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474239

RESUMEN

It is well known that extreme heat events happen frequently due to climate change. However, studies examining the direct health impacts of increased temperature and heat waves are lacking. Previous reports revealed that heatstroke induced acute lung injury and pulmonary dysfunction. This study aimed to investigate whether heat exposure induced lung fibrosis and to explore the underlying mechanisms. Male C57BL/6 mice were exposed to an ambient temperature of 39.5 ± 0.5 °C until their core temperature reached the maximum or heat exhaustion state. Lung fibrosis was observed in the lungs of heat-exposed mice, with extensive collagen deposition and the elevated expression of fibrosis molecules, including transforming growth factor-ß1 (TGF-ß1) and Fibronectin (Fn1) (p < 0.05). Moreover, epithelial-mesenchymal transition (EMT) occurred in response to heat exposure, evidenced by E-cadherin, an epithelial marker, which was downregulated, whereas markers of EMT, such as connective tissue growth factor (CTGF) and the zinc finger transcriptional repressor protein Slug, were upregulated in the heat-exposed lung tissues of mice (p < 0.05). Subsequently, cell senescence examination revealed that the levels of both senescence-associated ß-galactosidase (SA-ß-gal) staining and the cell cycle protein kinase inhibitor p21 were significantly elevated (p < 0.05). Mechanistically, the cGAS-STING signaling pathway evoked by DNA damage was activated in response to heat exposure (p < 0.05). In summary, we reported a new finding that heat exposure contributed to the development of early pulmonary fibrosis-like changes through the DNA damage-activated cGAS-STING pathway followed by cellular senescence.


Asunto(s)
Fibrosis Pulmonar , Masculino , Ratones , Animales , Fibrosis Pulmonar/metabolismo , Calor , Ratones Endogámicos C57BL , Pulmón/patología , Factor de Crecimiento Transformador beta1/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Senescencia Celular , Nucleotidiltransferasas/metabolismo
7.
Cell Commun Signal ; 22(1): 164, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448900

RESUMEN

Pancreatic neuroendocrine tumors (PanNETs), though uncommon, have a high likelihood of spreading to other body parts. Previously, the genetic diversity and evolutionary patterns in metastatic PanNETs were not well understood. To investigate this, we performed multiregion sampling whole-exome sequencing (MRS-WES) on samples from 10 patients who had not received prior treatment for metastatic PanNETs. This included 29 primary tumor samples, 31 lymph node metastases, and 15 liver metastases. We used the MSK-MET dataset for survival analysis and validation of our findings. Our research indicates that mutations in the MEN1/DAXX genes might trigger the early stages of PanNET development. We categorized the patients based on the presence (MEN1/DAXXmut, n = 7) or absence (MEN1/DAXXwild, n = 3) of these mutations. Notable differences were observed between the two groups in terms of genetic alterations and clinically relevant mutations, confirmed using the MSK-MET dataset. Notably, patients with mutations in MEN1/DAXX/ATRX genes had a significantly longer median overall survival compared to those without these mutations (median not reached vs. 43.63 months, p = 0.047). Multiplex immunohistochemistry (mIHC) analysis showed a more prominent immunosuppressive environment in metastatic tumors, especially in patients with MEN1/DAXX mutations. These findings imply that MEN1/DAXX mutations lead PanNETs through a unique evolutionary path. The disease's progression pattern indicates that PanNETs can spread early, even before clinical detection, highlighting the importance of identifying biomarkers related to metastasis to guide personalized treatment strategies.


Asunto(s)
Neoplasias Hepáticas , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Secuenciación del Exoma , Tumores Neuroendocrinos/genética , Genómica , Neoplasias Hepáticas/genética , Neoplasias Pancreáticas/genética , Microambiente Tumoral
9.
Materials (Basel) ; 17(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38399090

RESUMEN

Multi-layer lightweight composite structures are widely used in the field of aviation and aerospace during the processes of manufacturing and use, and, as such, they inevitably produce defects, damage, and other quality problems, creating the need for timely non-destructive testing procedures and the convenient repair or replacement of quality problems related to the material. When using terahertz non-destructive testing technology to detect defects in multi-layer lightweight composite materials, due to the complexity of their structure and defect types, there are many signal characteristics of terahertz waves propagating in the structures, and there is no obvious rule behind them, resulting in a large gap between the recognition results and the actual ones. In this study, we introduced a U-Net-BiLSTM network that combines the strengths of the U-Net and BiLSTM networks. The U-Net network extracts the spatial features of THz signals, while the BiLSTM network captures their temporal features. By optimizing the network structure and various parameters, we obtained a model tailored to THz spectroscopy data. This model was subsequently employed for the identification and quantitative analysis of defects in multi-layer lightweight composite structures using THz non-destructive testing. The proposed U-Net-BiLSTM network achieved an accuracy of 99.45% in typical defect identification, with a comprehensive F1 score of 99.43%, outperforming the CNN, ResNet, U-Net, and BiLSTM networks. By leveraging defect classification and thickness recognition, this study successfully reconstructed three-dimensional THz defect images, thereby realizing quantitative defect detection.

10.
Neuroradiology ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38296904

RESUMEN

PURPOSE: To investigate pain hypervigilance in individuals suffering from chronic neck and shoulder pain (CNSP) and its underlying brain mechanism. METHODS: The evaluation of pain vigilance was conducted through the utilization of pain vigilance and awareness questionnaires. Voxel-wise regional homogeneity (ReHo) from 60 CNSP patients and 60 healthy controls (HCs) using resting-state fMRI data. Voxel-wise two-sample T-test was conducted to reveal the ReHo variations between CNSP and HC. Correlation analyses were utilized to reveal the connection between brain abnormalities and medical measurements. Furthermore, a mediation analysis was conducted to elucidate the pathway-linking changes in brain function with medical measurements. RESULTS: Our present study revealed three main findings. Firstly, patients with CSNP demonstrated a heightened vigilance of pain in comparison to healthy adults, a common occurrence among individuals with chronic pain conditions. Secondly, we observed brain abnormalities in various brain regions in CSNP patients, and these alterations were associated with the extent of pain vigilance. Lastly, the pain hypervigilance impact on the severity of pain was found to be controlled by regional neural activity in the anterior cingulate cortex (ACC) in subjects with CSNP. CONCLUSION: Our findings suggested that long-term repetitive nociceptive input caused by chronic pain further aggravates the pain intensity by impairing the vigilance-related pain processing within the anterior cingulate cortex in CNSP patients.

11.
J Thorac Oncol ; 19(2): 252-272, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37717855

RESUMEN

INTRODUCTION: Brain metastasis, with the highest incidence in patients with lung cancer, significantly worsens prognosis and poses challenges to clinical management. To date, how brain metastasis evades immune elimination remains unknown. METHODS: Whole-exome sequencing and RNA sequencing were performed on 30 matched brain metastasis, primary lung adenocarcinoma, and normal tissues. Data from The Cancer Genome Atlas primary lung adenocarcinoma cohort, including multiplex immunofluorescence, were used to support the findings of bioinformatics analysis. RESULTS: Our study highlights the key role of intratumor heterogeneity of genomic alterations in the metastasis process, mainly caused by homologous recombination deficiency or other somatic copy number alteration-associated mutation mechanisms, leading to increased genomic instability and genomic complexity. We further proposed a selection model of brain metastatic evolution in which intratumor heterogeneity drives immune remodeling, leading to immune escape through different mechanisms under local immune pressure. CONCLUSIONS: Our findings provide novel insights into the metastatic process and immune escape mechanisms of brain metastasis and pave the way for precise immunotherapeutic strategies for patients with lung cancer with brain metastasis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Evasión Inmune , Mutación , Adenocarcinoma del Pulmón/genética , Neoplasias Encefálicas/genética , Heterogeneidad Genética , Microambiente Tumoral
12.
Environ Sci Pollut Res Int ; 30(58): 122051-122065, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37966652

RESUMEN

Using the value-added method in the global input-output framework, embedded carbon transfers between economies are measured. Then, the international embedded carbon network (IECN) models are constructed and analyzed to reveal the real pattern of the IECN. Influential factors of the IECN are further explored with Quadratic Assignment Procedure (QAP). The main findings are as follows: first, the IECN has the characteristics of small world and scale-free. Developed economies led by the USA have high centrality indicators and always occupy the core position in the network; the network position of China and India has risen significantly with different network characteristics. Second, the subgroup relationships of the carbon network implied by international trade are becoming more and more complex and diverse, economies' participation in the global carbon chain is gradually increasing, and the number of edge nodes are decreasing. Third, the results of QAP analysis show that in addition to the negative impact of geographical distance on embedded carbon transfers between economies, inter-country trade agreement relations, differences in industrial structure, energy intensity, environmental regulation, economic size, and population size have a positive impact on embedded carbon transfers between economies. These findings can provide important practice implications for the global carbon neutrality.


Asunto(s)
Comercio , Internacionalidad , Carbono , Industrias , Condiciones Sociales , China , Dióxido de Carbono/análisis , Desarrollo Económico
13.
Lab Chip ; 23(22): 4821-4833, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37846545

RESUMEN

To accurately phenocopy human biology in vitro, researchers have been reducing their dependence on standard, static two-dimensional (2D) cultures and instead are moving towards three-dimensional (3D) and/or multicellular culture techniques. While these culture innovations are becoming more commonplace, there is a growing body of research that illustrates the benefits and even necessity of recapitulating the dynamic flow of nutrients, gas, waste exchange and tissue interactions that occur in vivo. However, cost and engineering complexity are two main factors that hinder the adoption of these technologies and incorporation into standard laboratory workflows. We developed LATTICE, a plug-and-play microfluidic platform able to house up to eight large tissue or organ models that can be cultured individually or in an interconnected fashion. The functionality of the platform to model both healthy and diseased tissue states was demonstrated using 3D cultures of reproductive tissues including murine ovarian tissues and human fallopian tube explants (hFTE). When exogenously exposed to pathological doses of gonadotropins and androgens to mimic the endocrinology of polycystic ovarian syndrome (PCOS), subsequent ovarian follicle development, hormone production and ovulation copied key features of this endocrinopathy. Further, hFTE cilia beating decreased significantly only when experiencing continuous media exchanges. We were then able to endogenously recreate this phenotype on the platform by dynamically co-culturing the PCOS ovary and hFTE. LATTICE was designed to be customizable with flexibility in 3D culture formats and can serve as a powerful automated tool to enable the study of tissue and cellular dynamics in health and disease in all fields of research.


Asunto(s)
Síndrome del Ovario Poliquístico , Femenino , Animales , Humanos , Ratones , Síndrome del Ovario Poliquístico/metabolismo , Microfluídica , Técnicas de Cocultivo
14.
Gels ; 9(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37888408

RESUMEN

Transparent soil (TS) was specifically designed to support root growth in the presence of air, water, and nutrients and allowed the time-resolved phenotyping of roots in vivo. Nevertheless, it is imperative to further optimize the reagent cost of TS to enable its wider utilization. We substituted the costly Phytagel obtained from Sigma with two more economical alternatives, namely Biodee and Coolaber. TS beads from each brand were prepared using 12 different polymer concentrations and seven distinct crosslinker concentrations. A comprehensive assessment encompassing transparency, mechanical characteristics, particle size, porosity, and stability of TS was undertaken. Compared to the Sigma Phytagel brand, both Biodee and Coolaber significantly reduced the transparency and collapse stress of the TS they produced. Consequently, this led to a significant reduction in the allowable width and height of the growth box, although they could still simultaneously exceed 20 cm and 19 cm. There was no notable difference in porosity and stability among the TS samples prepared using the three Phytagel brands. Therefore, it is feasible to consider replacing the Phytagel brand to reduce TS production costs. This study quantified the differences in TS produced using three Phytagel brands at different prices that will better promote the application of TS to root phenotypes.

15.
ACS Nano ; 17(19): 19197-19210, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37750402

RESUMEN

There remains a lack of effective and noninvasive methods for the diagnosis and prognosis prediction of epithelial ovarian carcinoma (EOC). Here, we investigated the possibility of serum-derived small extracellular vesicle (sEV) microRNAs (miRNAs) as potential biomarkers for distinguishing between benign and malignant adnexal masses and predicting the prognosis of EOC patients. A serum sEV miRNA model for identifying the EOC (sEVmiR-EOC) was successfully established in the training cohort. Furthermore, the sEVmiR-EOC model was confirmed in the testing cohort and validation cohort, demonstrating robust diagnostic accuracy. The sEVmiR-EOC model showed better performance than carbohydrate antigen 125 (CA125) in discriminating patients with stage I EOC from benign patients. Using EOC samples and follow-up data, we identified miR-141-3p and miR-200c-3p as potential prognostic predictors. Finally, we confirmed the change of the sEVmiR-EOC RiskScore between the preoperative and postoperative samples and found that the sEVmiR-EOC model could predict the prognosis of EOC patients.

16.
Bioinformatics ; 39(9)2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37647650

RESUMEN

MOTIVATION: Single-cell DNA methylation sequencing can assay DNA methylation at single-cell resolution. However, incomplete coverage compromises related downstream analyses, outlining the importance of imputation techniques. With a rising number of cell samples in recent large datasets, scalable and efficient imputation models are critical to addressing the sparsity for genome-wide analyses. RESULTS: We proposed a novel graph-based deep learning approach to impute methylation matrices based on locus-aware neighboring subgraphs with locus-aware encoding orienting on one cell type. Merely using the CpGs methylation matrix, the obtained GraphCpG outperforms previous methods on datasets containing more than hundreds of cells and achieves competitive performance on smaller datasets, with subgraphs of predicted sites visualized by retrievable bipartite graphs. Besides better imputation performance with increasing cell number, it significantly reduces computation time and demonstrates improvement in downstream analysis. AVAILABILITY AND IMPLEMENTATION: The source code is freely available at https://github.com/yuzhong-deng/graphcpg.git.


Asunto(s)
Epigenoma , Estudio de Asociación del Genoma Completo , Metilación de ADN , Bioensayo , Recuento de Células
18.
Environ Health Perspect ; 131(6): 67010, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37342990

RESUMEN

BACKGROUND: Cyanobacterial harmful algal blooms (CyanoHABs) originate from the excessive growth or bloom of cyanobacteria often referred to as blue-green algae. They have been on the rise globally in both marine and freshwaters in recently years with increasing frequency and severity owing to the rising temperature associated with climate change and increasing anthropogenic eutrophication from agricultural runoff and urbanization. Humans are at a great risk of exposure to toxins released from CyanoHABs through drinking water, food, and recreational activities, making CyanoHAB toxins a new class of contaminants of emerging concern. OBJECTIVES: We investigated the toxic effects and mechanisms of microcystin-LR (MC-LR), the most prevalent CyanoHAB toxin, on the ovary and associated reproductive functions. METHODS: Mouse models with either chronic daily oral or acute intraperitoneal exposure, an engineered three-dimensional ovarian follicle culture system, and human primary ovarian granulosa cells were tested with MC-LR of various dose levels. Single-follicle RNA sequencing, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting, immunohistochemistry (IHC), and benchmark dose modeling were used to examine the effects of MC-LR on follicle maturation, hormone secretion, ovulation, and luteinization. RESULTS: Mice exposed long term to low-dose MC-LR did not exhibit any differences in the kinetics of folliculogenesis, but they had significantly fewer corpora lutea compared with control mice. Superovulation models further showed that mice exposed to MC-LR during the follicle maturation window had significantly fewer ovulated oocytes. IHC results revealed ovarian distribution of MC-LR, and mice exposed to MC-LR had significantly lower expression of key follicle maturation mediators. Mechanistically, in both murine and human granulosa cells exposed to MC-LR, there was reduced protein phosphatase 1 (PP1) activity, disrupted PP1-mediated PI3K/AKT/FOXO1 signaling, and less expression of follicle maturation-related genes. DISCUSSION: Using both in vivo and in vitro murine and human model systems, we provide data suggesting that environmentally relevant exposure to the CyanoHAB toxin MC-LR interfered with gonadotropin-dependent follicle maturation and ovulation. We conclude that MC-LR may pose a nonnegligible risk to women's reproductive health by heightening the probability of irregular menstrual cycles and infertility related to ovulatory disorders. https://doi.org/10.1289/EHP12034.


Asunto(s)
Cianobacterias , Floraciones de Algas Nocivas , Humanos , Femenino , Animales , Ratones , Fosfatidilinositol 3-Quinasas , Microcistinas/toxicidad , Microcistinas/análisis , Ovulación , Folículo Ovárico
19.
Materials (Basel) ; 16(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37241279

RESUMEN

Polyethylene (PE) is widely used in pipeline transportation owing to its excellent corrosion resistance, good stability, and ease of processing. As organic polymer materials, PE pipes inevitably undergo different degrees of aging during long-term use. In this study, terahertz time-domain spectroscopy was used to study the spectral characteristics of PE pipes with different degrees of photothermal aging, and the variation in the absorption coefficient with aging time was obtained. The absorption coefficient spectrum was extracted using uninformative variable elimination (UVE), successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), and random frog RF spectral screening algorithms, and the spectral slope characteristics of the aging-sensitive band were selected as the evaluation indices of the degree of PE aging. Based on this, a partial least squares aging characterization model was established to predict white PE80, white PE100 and black PE100 pipes with different aging degrees. The results showed that the prediction accuracy of the absorption coefficient spectral slope feature prediction model for the aging degree of different types of pipes was greater than 93.16% and the verification set error was within 13.5 h.

20.
ISA Trans ; 137: 601-614, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36803890

RESUMEN

To reduce the influence of vibrations generated by the control moment gyroscopes (CMGs), the researchers have put a lot of effort into isolating the vibration between the CMG and the satellite in order to lessen the impact of vibrations produced by the CMGs. The flexibility of the isolator causes the extra degrees of motion for the CMG, which is coupled with the CMG's dynamic behavior and the control performance of the gimbal servo system is therefore changed. However, how the flexible isolator influences the performance of the gimbal controller is uncertain. In this research, the coupling effect on the gimbal closed-loop system is analyzed. Firstly, the dynamic equation of the flexible isolator supported CMG system is established, and a classic controller is used to keep the gimbal speed stable. Secondly, the energy method (the Lagrange equation) is adopted to calculate the deformation of the flexible isolator and the rotation of the gimbal. Based on the dynamic model, the simulation is conducted in the Matlab/Simulink, the frequency and the step response of the gimbal system is employed to better explore the inherent characteristics of the system. Finally, we conduct the experiments on a CMG prototype. The experimental results show that the isolator reduces the response speed of the system. Moreover, the closed-loop system could be unstable due to the coupling relationship between the flywheel and the closed-loop gimbal system. The obtained results would be helpful for the design of the isolator and the optimization of the control system of a CMG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...