Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 383(6683): 586-587, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38330127

RESUMEN

A design strategy overcomes the strength-ductility trade-off in alloy manufacturing.

2.
Materials (Basel) ; 16(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37445064

RESUMEN

It is well known that the development of lightweight alloys with improved comprehensive performance and application value are the future development directions for the ultra-high-strength 7xxx series Al-Zn-Mg-Cu alloys used in the aircraft field. As the lightest metal element in nature, lithium (Li) has outstanding advantages in reducing the density and increasing the elastic modulus in aluminum alloys, so Al-Zn-Mg-Cu alloys containing Li have gained widespread attention. Furthermore, since the Al-Zn-Mg-Cu alloy is usually strengthened by aging treatment, it is crucial to understand how Li addition affects its aging precipitation process. As such, in this article, the effects and mechanism of Li on the aging precipitation behavior and the impact of Li content on the aging precipitation phase of Al-Zn-Mg-Cu alloys are briefly reviewed, and the influence of Li on the service properties, including mechanical properties, wear resistance, and fatigue resistance, of Al-Zn-Mg-Cu alloys are explained. In addition, the corresponding development prospects and challenges of the Al-Zn-Mg-Cu-Li alloy are also proposed. This review is helpful to further understand the role of Li in Al-Zn-Mg-Cu alloys and provides a reference for the development of high-strength aluminum alloys containing Li with good comprehensive properties.

3.
Adv Mater ; 35(38): e2303439, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37279880

RESUMEN

Platinum-based electrocatalysts possess high water electrolysis activity and are essential components for hydrogen evolution reaction (HER). A major challenge, however, is how to break the cost-efficiency trade-off. Here, a novel defect engineering strategy is presented to construct a nanoporous (FeCoNiB0.75 )97 Pt3 (atomic %) high-entropy metallic glass (HEMG) with a nanocrystalline surface structure that contains large amounts of lattice distortion and stacking faults to achieve excellent electrocatalytic performance using only 3 at% of Pt. The defect-rich HEMG achieves ultralow overpotentials at ampere-level current density of 1000 mA cm-2 for HER (104 mV) and oxygen evolution reaction (301 mV) under alkaline conditions, while retains a long-term durability exceeding 200 h at 100 mA cm-2 . Moreover, it only requires 81 and 122 mV to drive the current densities of 1000 and 100 mA cm-2 for HER under acidic and neutral conditions, respectively. Modelling results reveal that lattice distortion and stacking fault defects help to optimize atomic configuration and modulate electronic interaction, while the surface nanoporous architecture provides abundant active sites, thus synergistically contributing to the reduced energy barrier for water electrolysis. This defect engineering approach combined with a HEMG design strategy is expected to be widely applicable for development of high-performance alloy catalysts.

4.
J Hazard Mater ; 448: 130874, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716559

RESUMEN

Membrane separation and sulfate radicals-based advanced oxidation processes (SR-AOPs) can be combined as an efficient technique for the elimination of organic pollutants. The immobilization of metal oxide catalysts on ceramic membranes can enrich the membrane separation technology with catalytic oxidation avoiding recovering suspended catalysts. Herein, nanostructured Co3O4 ceramic catalytic membranes with different Co loadings were fabricated via a simple ball-milling and calcination process. Uniform distribution of Co3O4 nanoparticles in the membrane provided sufficient active sites for catalytic oxidation of 4-hydroxybenzoic acid (HBA). Mechanistic studies were conducted to determine the reactive radicals and showed that both SO4•- and •OH were present in the catalytic process while SO4•- plays the dominant role. The anti-fouling performance of the composite Co@Al2O3 membranes was also evaluated, showing that a great flux recovery was achieved with the addition of PMS for the fouling caused by humic acid (HA).

5.
ACS Appl Mater Interfaces ; 14(8): 10288-10297, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35175044

RESUMEN

Scaling up the production of cost-effective electrocatalysts for efficient water splitting at the industrial level is critically important to achieve carbon neutrality in our society. While noble-metal-based materials represent a high-performance benchmark with superb activities for hydrogen and oxygen evolution reactions, their high cost, poor scalability, and scarcity are major impediments to achieve widespread commercialization. Herein, a flexible freestanding Fe-based metallic glass (MG) with an atomic composition of Fe50Ni30P13C7 was prepared by a large-scale metallurgical technique that can be employed directly as a bifunctional electrode for water splitting. The surface hydroxylation process created unique structural and chemical heterogeneities in the presence of amorphous FeOOH and Ni2P as well as nanocrystalline Ni2P that offered various active sites to optimize each rate-determining step for water oxidation. The achieved overpotentials for the oxygen evolution reaction were 327 and 382 mV at high current densities of 100 and 500 mA cm-2 in alkaline media, respectively, and a cell voltage of 1.59 V was obtained when using the MG as both the anode and the cathode for overall water splitting at a current density of 10 mA cm-2. Theoretical calculations unveiled that amorphous FeOOH makes a significant contribution to water molecule adsorption and oxygen evolution processes, while the amorphous and nanocrystalline Ni2P stabilize the free energy of hydrogen protons (ΔGH*) in the hydrogen evolution process. This MG alloy design concept is expected to stimulate the discovery of many more high-performance catalytic materials that can be produced at an industrial scale with customized properties in the near future.

6.
Nanoscale ; 13(23): 10587-10599, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34105578

RESUMEN

Titanium and its alloys are among the widely used materials in the biomedical field, but they have poor wear resistance and antibacterial properties. In the present study, anodization, photo-reduction, and spin-coating technologies were integrated to prepare a hybrid modified coating for bio-inert titanium implants, having excellent comprehensive performance. The surface roughness of Ti-35Nb-2Ta-3Zr was specifically optimized by surface modification leading to improved wear resistance. Ag ions are still detectable after 28 days of submersion in saline. The antibacterial rate of the composite coating group reaches 100% by plate counting due to the antibacterial mechanism of direct and indirect contact. Both bacteria morphology and fluorescence staining experiments confirm these results. Besides, no cytotoxicity was detected in our fabricated implants during the CCK-8 assay. Accordingly, fabrication of hybrid modified coatings on Ti-35Nb-2Ta-3Zr is an effective strategy for infection and cytotoxicity prevention. These hybrid modified coatings can be regarded as promising multifunctional biomaterials.


Asunto(s)
Materiales Biocompatibles Revestidos , Titanio , Aleaciones , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Staphylococcus aureus , Propiedades de Superficie , Titanio/farmacología
7.
Phys Chem Chem Phys ; 23(19): 11121-11154, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33969854

RESUMEN

Amorphous metal nanoparticles (A-NPs) have aroused great interest in their structural disordering nature and combined downsizing strategies (e.g. nanoscaling), both of which are beneficial for highly strengthened properties compared to their crystalline counterparts. Conventional synthesis strategies easily induce product contamination and/or size limitations, which largely narrow their applications. In recent years, laser ablation in liquid (LAL) and laser fragmentation in liquid (LFL) as "green" and scalable colloid synthesis methodologies have attracted extensive enthusiasm in the production of ultrapure crystalline NPs, while they also show promising potential for the production of A-NPs. Yet, the amorphization in such methods still lacks sufficient rules to follow regarding the formation mechanism and criteria. To that end, this article reviews amorphous metal oxide and carbide NPs from LAL and LFL in terms of NP types, liquid selection, target elements, laser parameters, and possible formation mechanism, all of which play a significant role in the competitive relationship between amorphization and crystallization. Furthermore, we provide the prospect of laser-generated metallic glass nanoparticles (MG-NPs) from MG targets. The current and potential applications of A-NPs are also discussed, categorized by the attractive application fields e.g. in catalysis and magnetism. The present work aims to give possible selection rules and perspective on the design of colloidal A-NPs as well as the synthesis criteria of MG-NPs from laser-based strategies.

8.
J Colloid Interface Sci ; 581(Pt B): 860-873, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818686

RESUMEN

Due to the great limitation of glass forming ability, precisely controlling the chemical compositions of metallic glasses (MGs) still dramatically inhibits their widespread applications in wastewater remediation. Here, heterostructured catalysts were exploited by rapid annealing of Fe-based MGs and subsequent ball milling (BM) as advanced alternatives for amorphous counterparts in Fenton-like process. It was found that the surface characteristics tailored by ball milling enable more chemically active sites due to its enlarged specific surface area, surface defects and nanosized amorphous oxide layer that significantly enhance surface-catalyzed reaction in Fenton-like process. On the other hand, high-temperature annealing induced grain growth and electrochemical potential difference induced effect of galvanic cells in multiple crystalline phases (e.g. α-Fe (Si), Fe2B and Fe3Si) further provide an important contribution to high efficiency of electron transfer in heterostructured catalysts. Since the multiphase heterostructure is easily formed by a high-temperature annealing of MGs/amorphous-crystalline composite alloys, this work aims to provide an advanced alternative of MG catalyst without the elemental limitation of glass forming ability for wastewater remediation.

9.
ACS Nano ; 14(12): 17505-17514, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33237741

RESUMEN

Integrating carbon nitride with graphene into a lateral heterojunction would avoid energy loss within the interlaminar space region on conventional composites. To date, its synthesis process is limited to the bottom-up method which lacks the targeting and homogeneity. Herein, we proposed a hydrogen-initiated chemical epitaxial growth strategy at a relatively low temperature for the fabrication of graphene/carbon nitride in-plane heterostructure. Theoretical and experimental analysis proved that methane via in situ generation from the hydrogenated decomposition of carbon nitride triggered the graphene growth along the active sites at the edges of confined spaces. With the enhanced electrical field from the deposited graphene (0.5%), the performances on selective photo-oxidation and photocatalytic water splitting were promoted by 5.5 and 3.7 times, respectively. Meanwhile, a 7720 µmol/h/g(graphene) hydrogen evolution rate was acquired without any cocatalysts. This study provides an top-down strategy to synthesize in-plane catalyst for the utilization of solar energy.

10.
ACS Appl Mater Interfaces ; 12(40): 44789-44797, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32910643

RESUMEN

Metallic glasses (MGs) with superior catalytic performance have recently been recognized as attractive candidates for wastewater treatment. However, further improving their performance will require knowledge of how to precisely regulate their electronic structures via compositional control. Here, two Fe-based MGs (Fe78Si9B13 and Fe80Si9B11) were prepared to compare how slightly altering boron content affected their electronic structure and catalytic performance. Density functional theory revealed that the Fe78Si9B13 MG with 2 atom % higher boron exhibits an attractive electron delocalization, a high persulfate adsorption energy, and a superb work function due to precise regulation of the electronic structure, leading to exceptional degradation performance for seven organic pollutants. Furthermore, it can be reused 23 times without significant deterioration of catalytic performance, amorphous structure, and surface morphology. This work provides a new paradigm for the fundamental theory explaining how electronic structure is controlled by composition, creating a solid foundation to explore novel catalysts for water treatment.

11.
Materials (Basel) ; 13(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825550

RESUMEN

The as spun amorphous (Fe78Si9B13)99.5Zr0.5 (Zr0.5) and (Fe78Si9B13)99Zr1 (Zr1) ribbons having a Fenton-like reaction are proved to bear a good degradation performance in organic dye wastewater treatment for the first time by evaluating their degradation efficiency in methylene blue (MB) solution. Compared to the widely studied (Fe78Si9B13)100Zr0 (Zr0) amorphous ribbon for degradation, with increasing cZr (Zr atomic content), the as-spun Zr0, Zr0.5 and Zr1 amorphous ribbons have gradually increased degradation rate of MB solution. According to δc (characteristic distance) of as-spun Zr0, Zr0.5 and Zr1 ribbons, the free volume in Zr1 ribbon is higher Zr0 and Zr0.5 ribbons. In the reaction process, the Zr1 ribbon surface formed the 3D nano-porous structure with specific surface area higher than the cotton floc structure formed by Zr0 ribbon and coarse porous structure formed by Zr0.5 ribbon. The Zr1 ribbon's high free volume and high specific surface area make its degradation rate of MB solution higher than that of Zr0 and Zr0.5 ribbons. This work not only provides a new method to remedying the organic dyes wastewater with high efficiency and low-cost, but also improves an application prospect of Fe-based glassy alloys.

12.
Adv Mater ; 32(21): e2000385, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32267030

RESUMEN

Electrochemical water splitting offers an attractive approach for hydrogen production. However, the lack of high-performance cost-effective electrocatalyst severely hinders its applications. Here, a multinary high-entropy intermetallic (HEI) that possesses an unusual periodically ordered structure containing multiple non-noble elements is reported, which can serve as a highly efficient electrocatalyst for hydrogen evolution. This HEI exhibits excellent activities in alkalinity with an overpotential of 88.2 mV at a current density of 10 mA cm-2 and a Tafel slope of 40.1 mV dec-1 , which are comparable to those of noble catalysts. Theoretical calculations reveal that the chemical complexity and surprising atomic configurations provide a strong synergistic function to alter the electronic structure. Furthermore, the unique L12 -type ordered structure enables a specific site-isolation effect to further stabilize the H2 O/H* adsorption/desorption, which dramatically optimizes the energy barrier of hydrogen evolution. Such an HEI strategy uncovers a new paradigm to develop novel electrocatalyst with superior reaction activities.

13.
Nanoscale Adv ; 2(8): 3316-3322, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36134285

RESUMEN

Atomically thin colloidal quasi-two-dimensional (2D) semiconductor nanoplatelets (NPLs) have attracted tremendous attention due to their excellent properties and stimulating applications. Although some advances have been achieved in Cd- and Pb-based semiconductor NPLs, research into heavy-metal-free NPLs has been reported less due to the difficulties in the synthesis and the knowledge gap in the understanding of the growth mechanism. Herein wurtzite ZnTe NPLs with an atomic thickness of about 1.5 nm have been successfully synthesized by using Superhydride (LiEt3BH) reduced tributylphosphine-Te (TBP-Te) as the tellurium precursor. Mechanistic studies, both experimentally and theoretically, elucidate the transformation from metastable ZnTe MSC-323 magic-size nanoclusters (MSCs) to metastable ZnTe MSC-398, which then forms wurtzite ZnTe NPLs via an oriented attachment mechanism along the [100] and [002] directions of the wurtzite structure. This work not only provides insightful views into the growth mechanism of 2D NPLs but also opens an avenue for their applications in optoelectronics.

14.
Water Res ; 167: 115110, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31577967

RESUMEN

Membrane separation and advanced oxidation processes (AOPs) have been respectively demonstrated to be effective for a variety of water and/or wastewater treatments. Innovative integration of membrane with catalytic oxidation is thus expected to be more competing for more versatile applications. In this study, ceramic membranes (CMs) integrated with manganese oxide (MnO2) were designed and fabricated via a simple one-step ball-milling method with a high temperature sintering. Functional membranes with different loadings of MnO2 (1.67%, 3.33% and 6.67% of the total membrane mass) were then fabricated. The micro-structures and compositions of the catalytic membranes were investigated by a number of advanced characterisations. It was found that the MnO2 nanocatalysts (10-20 nm) were distributed uniformly around the Al2O3 particles (500 nm) of the membrane basal material, and can provide a large amount of active sites for the peroxymonosulfate (PMS) activation which can be facilitated within the pores of the catalytic membrane. The catalytic degradation of 4-hydroxylbenzoic acid (HBA), which is induced by the sulfate radicals via PMS activation, was investigated in a cross-flow membrane unit. The degradation efficiency slightly increased with a higher MnO2 loading. Moreover, even with the lowest loading of MnO2 (1.67%), the effectiveness of HBA degradation was still prominent, shown by that a 98.9% HBA degradation was achieved at the permeated side within 30 min when the initial HBA concentration was 80 ppm. The stability and leaching tests revealed a good stability of the catalytic membrane even after the 6th run. Electron paramagnetic resonance (EPR) and quenching tests were used to investigate the mechanism of PMS activation and HBA degradation. Both sulfate radicals (SO4•-) and hydroxyl radicals (•OH) were generated in the catalytic membrane process. Moreover, the contribution from non-radical process was also observed. This study provides a novel strategy for preparing a ceramic membrane with the function of catalytic degradation of organic pollutants, as well as outlining into future integration of separation and AOPs.


Asunto(s)
Contaminantes Ambientales , Compuestos de Manganeso , Cerámica , Óxidos , Sulfatos
15.
ACS Biomater Sci Eng ; 5(2): 1141-1149, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33405804

RESUMEN

Distinct corrosion behavior was reported in multiphased titanium alloys prepared by additive manufacturing and by traditional technologies because of different phase constituents formed during processing. An open question is therefore raised: is there always different corrosion behavior of materials prepared by different methods? This work reports resemble corrosion behavior of selective laser melted and wrought single ß-phase Ti-24Nb-4Zr-8Sn (Ti2448) in both NaCl solution and Hank's solution. The electrochemical measurements showed that both samples have close calculated polarization resistance and corrosion potential in NaCl solution, i.e., 4.99 ± 0.63 MΩ cm2 and -0.26 ± 0.01 V for the selective laser-melted Ti2448, and 4.42 ± 0.71 MΩ cm2 and -0.25 ± 0.01 V for the wrought Ti2448, respectively. Both samples reveal the same variation in weight change after 180-day immersion test in Hank's solution. Such resemblance in corrosion behavior without pitting morphologies is attributed to the formation of monolithic ß-phase during processing, which demonstrates that titanium alloys with single phase show comparable corrosion behavior regardless of the manufacturing methods adopted.

16.
Adv Mater ; 30(45): e1802764, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30277608

RESUMEN

Metallic glasses (MGs) with the metastable nature and random atomic packing structure have attracted large attention in the catalytic family due to their superior catalytic performance. In contrast, their crystalline counterparts are restricted by the highly ordered packing structure, fewer surface active sites, and crystallographic defects for catalytic activity. The uncertainty of the different catalytic mechanisms and the intrinsic characteristics correlated to MGs and their crystalline counterparts become a major impediment to promote their catalytic efficiencies and widespread applications. Herein, it is reported that the excellent catalytic behavior in Fe-based MGs goes through a detrimental effect with the partial crystallization, but receives a compelling rejuvenation in the full crystallization. Further investigation reveals that multiphase intermetallics with electric potential differences in fully crystallized alloys facilitate the formation of galvanic cells. More importantly, extensively reduced grain boundaries due to grain growth greatly weaken electron trapping and promote inner electron transportation. The relatively homogenous grain-boundary corrosion in the intermetallics contributes to well-separated phases after reaction, leading to refreshment of the surface active sites, thereby quickly activating hydrogen peroxide and rapidly degrading organic pollutants. The exploration of catalytic mechanisms in the crystalline counterparts of MGs provides significant insights into revolutionize novel catalysts.

17.
Chem Asian J ; 13(23): 3575-3592, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30225995

RESUMEN

With an intrinsically disordered atomic structure and a widely tunable atomic constituent, metallic glasses (MGs) have been extensively studied as promising catalysts in different catalytic fields. Particularly, Fe-based MGs with high catalytic activity, relatively low material cost, and environmental friendly compatibility also emerge as advanced catalysts. This review systematically discusses the recent advances of Fe-based MGs in catalytic applications, including wastewater remediation based on reductive degradation by multicomponent Fe-based MGs, oxidative degradation by introduction of advanced oxidation processes (AOPs) and nanocrystallization applied in Fe-based MGs up to date, and renewable energy conversion, with purposes of revealing Fe-based MG catalysts in the further improvement of catalytic performance and exploiting their promising catalytic abilities in a widely catalytic field.

18.
Adv Mater ; 30(39): e1803351, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30059172

RESUMEN

Quasi-1D cadmium chalcogenide quantum rods (QRs) are benchmark semiconductor materials that are combined with noble metals to constitute QR heterostructures for efficient photocatalysis. However, the high toxicity of cadmium and cost of noble metals are the main obstacles to their widespread use. Herein, a facile colloidal synthetic approach is reported that leads to the spontaneous formation of cadmium-free alloyed ZnSx Se1-x QRs from polydisperse ZnSe nanowires by alkylthiol etching. The obtained non-noble-metal ZnSx Se1-x QRs can not only be directly adopted as efficient photocatalysts for water oxidation, showing a striking oxygen evolution capability of 3000 µmol g-1 h-1 , but also be utilized to prepare QR-sensitized TiO2 photoanodes which present enhanced photo-electrochemical (PEC) activity. Density functional theory (DFT) simulations reveal that alloyed ZnSx Se1-x QRs have highly active Zn sites on the (100) surface and reduced energy barrier for oxygen evolution, which in turn, are beneficial to their outstanding photocatalytic and PEC activities.

19.
ACS Biomater Sci Eng ; 4(7): 2633-2642, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435126

RESUMEN

A Ti-5Cu alloy produced by selective laser melting exhibits a nonuniform Ti2Cu phase structure, which contains a small amount of α' phase in melt pool boundaries thereby resulting in reduced corrosion resistance. The heat-treatment process proposed in this work eliminates the deleterious effect of α' phase and the Ti2Cu phase is refined using different cooling rates, which improves the corrosion resistance. The electrochemical results indicate that the heat-treated Ti-5Cu samples have similar corrosion behavior to pure CP-Ti. A slower cooling rate produces a larger spacing between the Ti2Cu phases in the microstructure of the sample, resulting in higher corrosion resistance. The corrosion behavior of SLM-produced Ti-5Cu and heat-treated counterparts with different microstructure are detailed discussed.

20.
ACS Appl Mater Interfaces ; 9(36): 30703-30710, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28829113

RESUMEN

For the first time, a porous and conductive Co0.85Se/graphene network (CSGN), constructed by Co0.85Se nanocrystals being tightly connected with each other and homogeneously anchored on few-layered graphene nanosheets, has been synthesized by a facile one-pot solvothermal method. Compared to unhybridized Co0.85Se, CSGN exhibits much faster kinetics and better electrocatalytic behavior for hydrogen evolution reaction (HER). The HER mechanism of CSGN is improved to Volmer-Tafel combination, instead of Volmer-Heyrovsky combination, for Co0.85Se. CSGN has a very low Tafel slope of 34.4 mV/dec, which is much lower than that of unhybridized Co0.85Se (41.8 mV/dec) and is the lowest ever reported for Co0.85Se-based electrocatalysts. CSGN delivers a current density of 55 mA/cm2 at 250 mV overpotential, much larger than that of Co0.85Se (33 mA/cm2). Furthermore, CSGN shows superior electrocatalytic stability even after 1500 cycles. The excellent HER performance of CSGN is attributed to the unique porous and conductive network, which can not only guarantee interconnected conductive paths in the whole electrode but also provide abundant catalytic active sites, thereby facilitating charge transportation between the electrocatalyst and electrolyte. This work provides insight into rational design and low-cost synthesis of nonprecious transition-metal chalcogenide-based electrocatalysts with high efficiency and excellent stability for HER.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA