Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39087548

RESUMEN

In this study, peptides designed using fragments of an antifreeze protein (AFP) from the freeze-tolerant insect Tenebrio molitor, TmAFP, were evaluated as inhibitors of clathrate hydrate formation. It was found that these peptides exhibit inhibitory effects by both direct and indirect mechanisms. The direct mechanism involves the displacement of methane molecules by hydrophobic methyl groups from threonine residues, preventing their diffusion to the hydrate surface. The indirect mechanism is characterized by the formation of cylindrical gas bubbles, the morphology of which reduces the pressure difference at the bubble interface, thereby slowing methane transport. The transfer of methane to the hydrate interface is primarily dominated by gas bubbles in the presence of antifreeze peptides. Spherical bubbles facilitate methane migration and potentially accelerate hydrate formation; conversely, the promotion of a cylindrical bubble morphology by two of the designed systems was found to mitigate this effect, leading to slower methane transport and reduced hydrate growth. These findings provide valuable guidance for the design of effective peptide-based inhibitors of natural-gas hydrate formation with potential applications in the energy and environmental sectors.


Asunto(s)
Proteínas Anticongelantes , Metano , Tenebrio , Agua , Proteínas Anticongelantes/química , Cinética , Metano/química , Metano/análogos & derivados , Agua/química , Tenebrio/química , Animales , Gases/química , Péptidos/química , Péptidos/farmacología
2.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189150, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971208

RESUMEN

Histone deacetylases (HDACs) are key epigenetic regulators, and transcriptional complexes with deacetylase function are among the epigenetic corepressor complexes in the nucleus that target the epigenome. HDAC-bearing corepressor complexes such as the Sin3 complex, NuRD complex, CoREST complex, and SMRT/NCoR complex are common in biological systems. These complexes activate the otherwise inactive HDACs in a solitary state. HDAC complexes play vital roles in the regulation of key biological processes such as transcription, replication, and DNA repair. Moreover, deregulated HDAC complex function is implicated in human diseases including cancer. Therapeutic strategies targeting HDAC complexes are being sought actively. Thus, illustration of the nature and composition of HDAC complexes is vital to understanding the molecular basis of their functions under physiologic and pathologic conditions, and for designing targeted therapies. This review presents key aspects of large multiprotein HDAC-bearing complexes including their structure, function, regulatory mechanisms, implication in disease development, and role in therapeutics.

3.
MycoKeys ; 106: 1-21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38910874

RESUMEN

Two new species of Polyporales, Cerrenacaulinicystidiata and Polyporusminutissimus, are illustrated and described on the basis of morphological studies and phylogenetic analyses from southern China and Vietnam. C.caulinicystidiata is characterized by annual, resupinate, sometimes effused-reflexed basidiocarps, greyish orange to brownish orange pore surface, irregular pores (3-8 per mm), a trimitic hyphal system, pyriform to ventricose cystidia, and subglobose basidiospores 3.2-4.5 × 2.8-3.5 µm in size. P.minutissimus is characterized by annual, solitary, fan-shaped with a depressed center or infundibuliform basidiocarps, obvious black stipe, cream to buff yellow pileal surface with glabrous, occasionally zonate and radially aligned stripes, angular pores (6-9 per mm), a dimitic hyphal system, and cylindrical basidiospores, 5-9.2 × 2.2-4 µm. Detailed descriptions and illustrations of the two new species are provided. The differences between the two new species and their morphologically similar and phylogenetically related species are discussed.

4.
Front Genet ; 15: 1333931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482382

RESUMEN

Introduction: Post-transcriptional RNA modifications are crucial regulators of tumor development and progression. In many biological processes, N1-methyladenosine (m1A) plays a key role. However, little is known about the links between chemical modifications of messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) and their function in bladder cancer (BLCA). Methods: Methylated RNA immunoprecipitation sequencing and RNA sequencing were performed to profile mRNA and lncRNA m1A methylation and expression in BLCA cells, with or without stable knockdown of the m1A methyltransferase tRNA methyltransferase 61A (TRMT61A). Results: The analysis of differentially methylated gene sites identified 16,941 peaks, 6,698 mRNAs, and 10,243 lncRNAs in the two groups. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the differentially methylated and expressed transcripts showed that m1A-regulated transcripts were mainly related to protein binding and signaling pathways in cancer. In addition, the differentially genes were identified that were also differentially m1A-modified and identified 14 mRNAs and 19 lncRNAs. Next, these mRNAs and lncRNAs were used to construct a lncRNA-microRNA-mRNA competing endogenous RNA network, which included 118 miRNAs, 15 lncRNAs, and 8 mRNAs. Finally, the m1A-modified transcripts, SCN2B and ENST00000536140, which are highly expressed in BLCA tissues, were associated with decreased overall patient survival. Discussion: This study revealed substantially different amounts and distributions of m1A in BLCA after TRMT61A knockdown and predicted cellular functions in which m1A may be involved, providing evidence that implicates m1A mRNA and lncRNA epitranscriptomic regulation in BLCA tumorigenesis and progression.

5.
Int J Ophthalmol ; 17(1): 119-125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38239936

RESUMEN

AIM: To investigate the difference of medial rectus (MR) and lateral rectus (LR) between acute acquired concomitant esotropia (AACE) and the healthy controls (HCs) detected by magnetic resonance imaging (MRI). METHODS: A case-control study. Eighteen subjects with AACE and eighteen HCs were enrolled. MRI scanning data were conducted in target-controlled central gaze with a 3-Tesla magnetic resonance scanner. Extraocular muscles (EOMs) were scanned in contiguous image planes 2-mm thick spanning the EOM origins to the globe equator. To form posterior partial volumes (PPVs), the LR and MR cross-sections in the image planes 8, 10, 12, and 14 mm posterior to the globe were summed and multiplied by the 2-mm slice thickness. The data were classified according to the right eye, left eye, dominant eye, and non-dominant eye, and the differences in mean cross-sectional area, maximum cross-sectional area, and PPVs of the MR and LR muscle in the AACE group and HCs group were compared under the above classifications respectively. RESULTS: There were no significant differences between the two groups of demographic characteristics. The mean cross-sectional area of the LR muscle was significantly greater in the AACE group than that in the HCs group in the non-dominant eyes (P=0.028). The maximum cross-sectional area of the LR muscle both in the dominant and non-dominant eye of the AACE group was significantly greater than the HCs group (P=0.009, P=0.016). For the dominant eye, the PPVs of the LR muscle were significantly greater in the AACE than that in the HCs group (P=0.013), but not in the MR muscle (P=0.698). CONCLUSION: The size and volume of muscles dominant eyes of AACE subjects change significantly to overcome binocular diplopia. The LR muscle become larger to compensate for the enhanced convergence in the AACE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA