Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Burns Trauma ; 12: tkad055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601971

RESUMEN

Background: Prevention of diabetic heart myocardial ischemia-reperfusion (IR) injury (MIRI) is challenging. Propofol attenuates MIRI through its reactive oxygen species scavenging property at high doses, while its use at high doses causes hemodynamic instability. Salvianolic acid A (SAA) is a potent antioxidant that confers protection against MIRI. Both propofol and SAA affect metabolic profiles through regulating Adenosine 5'-monophosphate-activated protein kinase (AMPK). The aim of this study was to investigate the protective effects and underlying mechanisms of low doses of propofol combined with SAA against diabetic MIRI. Methods: Diabetes was induced in mice by a high-fat diet followed by streptozotocin injection, and MIRI was induced by coronary artery occlusion and reperfusion. Mice were treated with propofol at 46 mg/kg/h without or with SAA at 10 mg/kg/h during IR. Cardiac origin H9c2 cells were exposed to high glucose (HG) and palmitic acid (PAL) for 24 h in the absence or presence of cluster of differentiation 36 (CD36) overexpression or AMPK gene knockdown, followed by hypoxia/reoxygenation (HR) for 6 and 12 h. Results: Diabetes-exacerbated MIRI is evidenced as significant increases in post-ischemic infarction with reductions in phosphorylated (p)-AMPK and increases in CD36 and ferroptosis. Propofol moderately yet significantly attenuated all the abovementioned changes, while propofol plus SAA conferred superior protection against MIRI to that of propofol. In vitro, exposure of H9c2 cells under HG and PAL decreased cell viability and increased oxidative stress that was concomitant with increased levels of ferroptosis and a significant increase in CD36, while p-AMPK was significantly reduced. Co-administration of low concentrations of propofol and SAA at 12.5 µM in H9c2 cells significantly reduced oxidative stress, ferroptosis and CD36 expression, while increasing p-AMPK compared to the effects of propofol at 25 µM. Moreover, either CD36 overexpression or AMPK silence significantly exacerbated HR-induced cellular injuries and ferroptosis, and canceled propofol- and SAA-mediated protection. Notably, p-AMPK expression was downregulated after CD36 overexpression, while AMPK knockdown did not affect CD36 expression. Conclusions: Combinational usage of propofol and SAA confers superior cellular protective effects to the use of high-dose propofol alone, and it does so through inhibiting HR-induced CD36 overexpression to upregulate p-AMPK.

2.
Sci Rep ; 14(1): 7620, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556580

RESUMEN

Radiofrequency ablation (RFA) comparative efficacy of treatments using video-assisted thoracoscopic sympathectomy (VATS) in the long term remains uncertain in patients with palmar hyperhidrosis (PHH). This study aimed to compare the efficacy and safety of RFA and VATS in patients with PHH. We recruited patients aged ≥ 14 years with diagnosed PHH from 14 centres in China. The treatment options of RFA or VATS were assigned to two cohort in patients with PHH. The primary outcome was the efficacy at 1-year. A total of 807 patients were enrolled. After propensity score matching, the rate of complete remission was lower in RFA group than VATS group (95% CI 0.21-0.57; p < 0.001). However, the rates of palmar dryness (95% CI 0.38-0.92; p = 0.020), postoperative pain (95% CI 0.13-0.33; p < 0.001), and surgery-related complications (95% CI 0.19-0.85; p = 0.020) were lower in RFA group than in VATS group, but skin temperature rise was more common in RFA group (95% CI 1.84-3.58; p < 0.001). RFA had a lower success rate than VATS for the complete remission of PHH. However, the symptom burden and cost are lower in patients undergoing RFA compared to those undergoing VATS.Trial Registration: ChiCTR2000039576, URL: http://www.chictr.org.cn/index.aspx .


Asunto(s)
Hiperhidrosis , Ablación por Radiofrecuencia , Humanos , Resultado del Tratamiento , Cirugía Torácica Asistida por Video/efectos adversos , Hiperhidrosis/cirugía , Ablación por Radiofrecuencia/efectos adversos , Simpatectomía/efectos adversos , Mano
3.
Gene ; 894: 147962, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37926174

RESUMEN

Macrophages has become a promising target of sepsis treatment because macrophages dysfunction contributes to the progress of sepsis. The targeted therapy of sepsis based on macrophages ferroptosis is drawing more and more attention, but the molecular mechanism involved is poorly understood. In this study, Mus musculus-derived macrophages were used for in-vitro experiments. We found that LPS could induce ferroptosis in macrophages via the detection of apoptosis, GSH, lipid peroxide and GPX4 levels. Meanwhile, miR-129-2-3p was up-regulated in macrophages exposure to LPS. Next, we confirmed that miR-129-2-3p promoted the LPS-induced polarization of M1 phenotype in macrophages via the detection of Arg-1 and iNOS levels; miR-129-2-3p promoted the LPS-induced ferroptosis in macrophages. Further, luciferase assay showed that SMAD3 was identified as a target gene of miR-129-2-3p and its expression was negatively regulated by miR-129-2-3p and LPS. SMAD3 could inhibit the LPS-induced polarization of M1 phenotype and ferroptosis in macrophages by targeting GPX4. Collectively, we demonstrated the target gene and molecular mechanism of miR-129-2-3p mediating LPS-induced polarization and ferroptosis in macrophages by targeting the SMAD3-GPX4 axis, which would provide a novel strategy for sepsis targeted therapy based on macrophages polarization and ferroptosis.


Asunto(s)
Ferroptosis , MicroARNs , Sepsis , Animales , Ratones , Ferroptosis/genética , Lipopolisacáridos/farmacología , Macrófagos , MicroARNs/genética , Sepsis/genética
4.
Eur J Pharmacol ; 965: 176276, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113966

RESUMEN

BACKGROUND: Inflammation is a major contributing factor in myocardial ischemia/reperfusion (I/R) injury, and targeting macrophage inflammation is an effective strategy for myocardial I/R therapy. Though remimazolam is approved for sedation, induction, and the maintenance of general anesthesia in cardiac surgery, its effect on cardiac function during the perioperative period has not been reported. Therefore, this research aimed to explore the impact of remimazolam on inflammation during myocardial ischemia/reperfusion (I/R) injury. METHODS: An in vivo myocardial I/R mice model and an in vitro macrophage inflammation model were used to confirm remimazolam's cardiac protective effect. In vivo, we used echocardiography, hematoxylin and eosin (HE), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to determine remimazolam's therapeutic effects on myocardial I/R injury and inflammation. In vitro, we employed enzyme-linked immunosorbent assay (ELISA), Western blot, Real-time Quantitative PCR (qPCR), flow cytometry, and immunofluorescence staining to assess inflammatory responses, especially remimazolam's effects on macrophage polarization after I/R. Furthermore, molecular docking was used to identify its potential binding targets on the inflammatory pathway to explore the mechanism of remimazolam. RESULTS: Remimazolam exhibited significant anti-myocardial I/R injury activity by inhibiting macrophage-mediated inflammation to reduce myocardial infarction, enhancing cardiac function. In addition, macrophage depletion counteracted improved cardiac function by remimazolam treatment. Mechanistically, the activated NF-ĸB signaling pathway and phosphorylation of p50 and p65 were repressed for anti-inflammatory effect. Consistently, two binding sites on p50 and p65 were identified by molecular docking to affect their phosphorylation of the Ser, Arg, Asp, and His residues, thus regulating NF-κB pathway activity. CONCLUSION: Our results unveil the therapeutic potential of remimazolam against myocardial I/R injury by inhibiting macrophages polarizing into the M1 type, alleviating inflammation.


Asunto(s)
Benzodiazepinas , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratones , Animales , FN-kappa B/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Simulación del Acoplamiento Molecular , Daño por Reperfusión/metabolismo , Macrófagos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Apoptosis
6.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4445-4462, 2023 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-38013177

RESUMEN

Plastics are widely used in human daily life, which bring great convenience. Nevertheless, the disposal of a large amount of plastic wastes also brings great pressure to the environment. Polyethylene terephthalate (PET) is a polymer thermoplastic material produced from petroleum. It has become one of the most commonly used plastics in the world due to its durability, high transparency, light weight and other characteristics. PET can exist in nature for a long time due to its complex structure and the difficulty in degradation, which causes serious pollution to the global ecological environment, and threatens human health. The degradation of PET wastes has since become one of the global challenges. Compared with physical and chemical methods, biodegradation is the greenest way for treating PET wastes. This review summarizes the recent advances on PET biodegradation including microbial and enzymatic degradation of PET, biodegradation pathway, biodegradation mechanisms, and molecular modification of PET-degrading enzymes. In addition, the prospect for achieveing efficient degradation of PET, searching and improving microorganisms or enzymes that can degrade PET of high crystallinity are presented, with the aimto facilitate the development, application and molecular modification of PET biodegradation microorganisms or enzymes.


Asunto(s)
Petróleo , Tereftalatos Polietilenos , Humanos , Tereftalatos Polietilenos/metabolismo , Polímeros , Biodegradación Ambiental
7.
Hypertension ; 80(12): 2572-2580, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37814892

RESUMEN

BACKGROUND: The STEP (Strategy of Blood Pressure Intervention in the Elderly Hypertensive Patients) trial demonstrated that intensive systolic blood pressure (SBP) lowering has cardiovascular benefits. However, the influence of baseline diastolic blood pressure (DBP) on the effects of intensive blood pressure lowering on cardiovascular outcomes has not been fully elucidated. METHODS: We performed a post hoc analysis of the STEP trial. Participants were randomly allocated to intensive (110 to <130 mm Hg) or standard (130 to <150 mm Hg) treatment groups. The effects of intensive SBP lowering on the primary composite outcome (stroke, acute coronary syndrome, acute decompensated heart failure, coronary revascularization, atrial fibrillation, and cardiovascular death), major adverse cardiac event (a composite of the individual components of the primary outcome except for stroke), and all-cause mortality were analyzed according to baseline DBP as both a categorical and a continuous variable. RESULTS: The 8259 participants had a mean age of 66.2±4.8 years, and 46.5% were men. Participants with lower DBP were slightly older and had greater histories of cardiovascular disease, diabetes, and hyperlipidemia. Within each baseline DBP quartile, the mean achieved DBP was lower in the intensive versus standard group. The effects of intensive SBP lowering were not modified by baseline DBP as a continuous variable or as a categorical variable (quartiles, or <70, 70 to <80, and ≥80 mm Hg; all P value for interaction >0.05). CONCLUSIONS: The beneficial effects of intensive SBP lowering on cardiovascular outcomes were unaffected by baseline DBP. Lower DBP should not be an obstacle to intensive SBP control. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03015311.


Asunto(s)
Síndrome Coronario Agudo , Insuficiencia Cardíaca , Hipertensión , Masculino , Humanos , Anciano , Persona de Mediana Edad , Femenino , Presión Sanguínea , Antihipertensivos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico
8.
Macromolecules ; 56(14): 5502-5511, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521250

RESUMEN

Polymorphism of semicrystalline polymers has significant influence on their physical properties, with each form having its advantages and disadvantages. However, real-life polymer processing often results in different coexisting crystal polymorphs, and it remains a challenge to determine their shape, spatial distribution, and volume fraction. Here, i-polypropylene (i-PP) sheets containing both α- and ß-forms were prepared either by adding ß-nucleating agent or by fiber pulling-induced crystallization. By adding a compatible dye that is partially rejected from the growing crystalline aggregates (spherulites and cylindrites), we visualize the shape of these objects in 3D using two-photon fluorescence confocal microscopy. To distinguish between crystal forms, we take advantage of the difference in dye-retaining ability of the α- and ß-aggregates. Even in 2D, fluorescence microscopy (FM) distinguishes the two crystal forms better than polarized microscopy. In 3D imaging, the volume fraction and spatial distribution of α- and ß-forms in different morphological types could be determined quantitatively. Morphologies described as α-teeth, ß-fans, and α-teardrops were visualized for the first time in 3D. Furthermore, internal and surface microcracks were seen to be associated predominantly with the ß-form and around the fiber. Spatial distribution of α- and ß-forms was also determined by scanning with a synchrotron X-ray beam. Good agreement was obtained with 3D microscopy, but XRD could not match the detail obtainable by the tomography. The work demonstrates the ability of the 3D imaging method to distinguish different crystal forms and their specific morphologies.

9.
Cell Death Discov ; 9(1): 164, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188676

RESUMEN

Myocardial infarction that causes damage to heart muscle can lead to heart failure. The identification of molecular mechanisms promoting myocardial regeneration represents a promising strategy to improve cardiac function. Here we show that IGF2BP3 plays an important role in regulating adult cardiomyocyte proliferation and regeneration in a mouse model of myocardial infarction. IGF2BP3 expression progressively decreases during postnatal development and becomes undetectable in the adult heart. However, it becomes upregulated after cardiac injury. Both gain- and loss-of-function analyses indicate that IGF2BP3 regulates cardiomyocyte proliferation in vitro and in vivo. In particular, IGF2BP3 promotes cardiac regeneration and improves cardiac function after myocardial infarction. Mechanistically, we demonstrate that IGF2BP3 binds to and stabilizes MMP3 mRNA through interaction with N6-methyladenosine modification. The expression of MMP3 protein is also progressively downregulated during postnatal development. Functional analyses indicate that MMP3 acts downstream of IGF2BP3 to regulate cardiomyocyte proliferation. These results suggest that IGF2BP3-mediated post-transcriptional regulation of extracellular matrix and tissue remodeling contributes to cardiomyocyte regeneration. They should help to define therapeutic strategy for ameliorating myocardial infarction by inducing cell proliferation and heart repair.

10.
Biol Res ; 56(1): 20, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37143143

RESUMEN

BACKGROUND: Ischemia-reperfusion (IR) induces increased release of extracellular vesicles in the heart and exacerbates myocardial IR injury. We have previously shown that propofol attenuates hypoxia/reoxygenation (HR)-induced injury in human umbilical vein endothelial cells (HUVECs) and that microvesicles derived from propofol-treated HUVECs inhibit oxidative stress in endothelial cells. However, the role of microvesicles derived from propofol post-treated HUVECs ((HR + P)-EMVs) in IR-injured cardiomyocytes is unclear. In this study, we aimed to investigate the role of (HR + P)-EMVs in cardiac IR injury compared to microvesicles derived from hypoxic/reoxygenated HUVECs (HR-EMVs) and to elucidate the underlying mechanisms. METHODS: Hypoxia/reoxygenation (HR) models of HUVECs and AC16 cells and a mouse cardiac IR model were established. Microvesicles from HR-injured HUVECs, DMSO post-treated HUVECs and propofol post-treated HUVECs were extracted by ultra-high speed centrifugation, respectively. The above EMVs were co-cultured with HR-injured AC16 cells or injected intracardially into IR mice. Flow cytometry and immunofluorescence were used to determine the levels of oxidative stress and apoptosis in cardiomyocytes. Apoptosis related proteins were detected by Western blot. Echocardiography for cardiac function and Evans blue-TTC staining for myocardial infarct size. Expression of lncCCT4-2 in EMVs and AC16 cells was analysed by whole transcriptome sequencing of EMVs and RT-qPCR. The molecular mechanism of inhibition of myocardial injury by (HR + P)-EMVs was elucidated by lentiviral knockdown of lncCCT4-2, plasmid overexpression or knockdown of CCT4, and actinomycin D assay. RESULTS: In vitro and in vivo experiments confirmed that HR-EMVs exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes, leading to increased infarct size and worsened cardiac function. Notably, (HR + P)-EMVs induced significantly less oxidative stress and apoptosis in IR-injured cardiomyocytes compared to HR-EMVs. Mechanistically, RNA sequencing of EMVs and RT-qPCR showed that lncCCT4-2 was significantly upregulated in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs. Reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. Furthermore, the anti-apoptotic activity of lncCCT4-2 from (HR + P)-EMVs was achieved by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in cardiomyocytes. CONCLUSIONS: Our study showed that (HR + P)-EMVs uptake by IR-injured cardiomyocytes upregulated lncCCT4-2 in cardiomyocytes and promoted CCT4 expression, thereby inhibiting HR-EMVs induced oxidative stress and apoptosis.


Asunto(s)
Propofol , Humanos , Ratones , Animales , Propofol/farmacología , Hipoxia , Células Endoteliales de la Vena Umbilical Humana , Miocitos Cardíacos , Estrés Oxidativo , Apoptosis/fisiología , Chaperonina con TCP-1
11.
Cell Rep ; 42(3): 112259, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36920907

RESUMEN

N6-methyladenosine (m6A) modification accounts for the most prevalent mRNA internal modification and has emerged as a widespread regulatory mechanism in multiple physiological processes. We address a role of methyltransferase-like protein 3 (METTL3) in neutrophil activation. METTL3 controls neutrophil release from bone marrow to circulation through surface expression of CXC chemokine receptor 2 (CXCR2) in a Toll-like receptor 4 (TLR4) signaling-dependent manner in lipopolysaccharide (LPS)-induced endotoxemia. We show that the mRNA of TLR4 is modified by m6A, exhibiting increased translation and slowed degradation simultaneously, leading to elevated protein levels of TLR4, which eventually promotes the TLR4 signaling activation of neutrophil. The reduced expression of TLR4 lowers cytokine secretion in METTL3-deleted neutrophils upon LPS stimulation through TLR4/Myd88/nuclear factor κB (NF-κB) signaling. Collectively, these data demonstrate that METTL3 modulation of TLR4 expression is a critical determinant of neutrophil activation in endotoxemia.


Asunto(s)
Endotoxemia , Receptor Toll-Like 4 , Humanos , Metilación , Receptor Toll-Like 4/metabolismo , Activación Neutrófila , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Endotoxemia/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Macromolecules ; 56(1): 198-206, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36644554

RESUMEN

Two-photon confocal laser microscopy was used to obtain three-dimensional (3D) images of the morphology of poly(lactic acid) after shear-induced crystallization. The necessary fluorescence contrast was achieved by doping the polymer with Nile Red. The dye gets partially rejected from the growing crystalline aggregates during their formation, thus creating a renderable high-low fluorescence boundary outlining the shape of the aggregates. Parallel-plate melt-shearing and pulling a glass fiber through the melt were used as the two methods to achieve shear-induced crystallization. This study focuses on the shape of the resulting cylindrites, i.e., large-diameter shish-kebabs. The first 3D images of polymer cylindrites show that, if far from boundaries, they are circular cylinders, highly regular after fiber pull, but less so after parallel-plate shear. In the latter case, the cylindrite reveals the trajectory of the foreign particle that had nucleated its growth. Interestingly, lateral growth of the cylindrites was found to accelerate toward the sample surface when approaching it, giving the cylindrite an elliptical cross section. Furthermore and surprisingly, in the case of fiber pull, a row of spherulites is nucleated at the polymer-substrate interface nearest to the fiber, aligned along the fiber axis and appearing ahead of the rest of the space-filling spherulites. Both the phenomena, elliptical cylindrites and row of spherulites, are attributed to negative pressure buildup peaking at the cylindrite growth front and at the nearby film surface caused by crystallization-induced volume contraction. The pressure and flow distribution in the system is confirmed by numerical simulation. The results illustrate the value of 3D imaging of crystalline morphology in polymer science and polymer processing industry.

13.
J Adv Res ; 44: 39-51, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35618635

RESUMEN

INTRODUCTION: Sepsis-induced apoptosis leads to lymphopenia including the decrease of CD4+ T cells thus favoring immunosuppression. OBJECTIVES: Although epidermal growth factor receptor (EGFR) inhibitors significantly improve the survival rate of septic mice, the effect of EGFR on the function and metabolism of CD4+ T cells in sepsis remained unknown. METHODS: CD4+ T cells from septic mice and patients were assessed for apoptosis, activation, Warburg metabolism and glucose transporter 1 (Glut1) expression with or without the interference of EGFR activation. RESULTS: EGFR facilitates CD4+ T cell activation and apoptosis through Glut1, which is a key enzyme that controls glycolysis in T cells. EGFR, TANK binding kinase 1 (TBK1) and Glut1 form a complex to facilitate Glut1 transportation from cytoplasm to cell surface. Both the levels of membrane expression of EGFR and Glut1 and the activation levels of CD4+ T cells were significantly higher in patients with sepsis as compared with healthy subjects. CONCLUSION: Our data demonstrated that through its downstream TBK1/Exo84/RalA protein system, EGFR regulates Glut1 transporting to the cell surface, which is a key step for inducing the Warburg effect and the subsequent cellular activation and apoptosis of CD4+ T lymphocytes and may eventually affect the immune functional status, causing immune cell exhaustion in sepsis.


Asunto(s)
Linfocitos T CD4-Positivos , Sepsis , Animales , Ratones , Linfocitos T CD4-Positivos/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/farmacología , Apoptosis , Sepsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Biol. Res ; 56: 20-20, 2023. graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1513733

RESUMEN

BACKGROUND: Ischemia-reperfusion (IR) induces increased release of extracellular vesicles in the heart and exacerbates myocardial IR injury. We have previously shown that propofol attenuates hypoxia/reoxygenation (HR)-induced injury in human umbilical vein endothelial cells (HUVECs) and that microvesicles derived from propofol-treated HUVECs inhibit oxidative stress in endothelial cells. However, the role of microvesicles derived from propofol post-treated HUVECs ((HR + P)-EMVs) in IR-injured cardiomyocytes is unclear. In this study, we aimed to investigate the role of (HR + P)-EMVs in cardiac IR injury compared to microvesicles derived from hypoxic/reoxygenated HUVECs (HR-EMVs) and to elucidate the underlying mechanisms. METHODS: Hypoxia/reoxygenation (HR) models of HUVECs and AC16 cells and a mouse cardiac IR model were established. Microvesicles from HR-injured HUVECs, DMSO post-treated HUVECs and propofol post-treated HUVECs were extracted by ultra-high speed centrifugation, respectively. The above EMVs were co-cultured with HR-injured AC16 cells or injected intracardially into IR mice. Flow cytometry and immunofluorescence were used to determine the levels of oxidative stress and apoptosis in cardiomyocytes. Apoptosis related proteins were detected by Western blot. Echocardiography for cardiac function and Evans blue-TTC staining for myocardial infarct size. Expression of lncCCT4-2 in EMVs and AC16 cells was analysed by whole transcriptome sequencing of EMVs and RT-qPCR. The molecular mechanism of inhibition of myocardial injury by (HR + P)-EMVs was elucidated by lentiviral knockdown of lncCCT4-2, plasmid overexpression or knockdown of CCT4, and actinomycin D assay. RESULTS: In vitro and in vivo experiments confirmed that HR-EMVs exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes, leading to increased infarct size and worsened cardiac function. Notably, (HR + P)-EMVs induced significantly less oxidative stress and apoptosis in IR-injured cardiomyocytes compared to HR-EMVs. Mechanistically, RNA sequencing of EMVs and RT-qPCR showed that lncCCT4-2 was significantly upregulated in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs. Reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. Furthermore, the anti-apoptotic activity of lncCCT4-2 from (HR + P)-EMVs was achieved by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in cardiomyocytes. CONCLUSIONS: Our study showed that (HR + P)-EMVs uptake by IR-injured cardiomyocytes upregulated lncCCT4-2 in cardiomyocytes and promoted CCT4 expression, thereby inhibiting HR-EMVs induced oxidative stress and apoptosis. Highlights Microvesicles from hypoxic/reoxygenated HUVECs (HR-EMVs) exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes. Microvesicles from propofol post-treated HUVECs ((HR + P)-EMVs) induced diminished oxidative stress and apoptosis in IR-injured cardiomyocytes compared with microvesicles from hypoxic/reoxygenated HUVECs (HR-EMVs). lncCCT4-2 was significantly highly expressed in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs, and reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. lncCCT4-2 inhibited HR-EMVs induced oxidative stress and apoptosis in HR-injured AC16 cells by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in AC16 cells.


Asunto(s)
Humanos , Animales , Ratones , Propofol/farmacología , Apoptosis/fisiología , Estrés Oxidativo , Miocitos Cardíacos , Chaperonina con TCP-1 , Células Endoteliales de la Vena Umbilical Humana , Hipoxia
15.
Cell Death Dis ; 13(11): 934, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344490

RESUMEN

EGFR phosphorylation is required for TLR4-mediated macrophage activation during sepsis. However, whether and how intracellular EGFR is transported during endotoxemia have largely been unknown. Here, we show that LPS promotes high levels cell surface expression of EGFR in macrophages through two different transport mechanisms. On one hand, Rab10 is required for EEA1-mediated the membrane translocation of EGFR from the Golgi. On the other hand, EGFR phosphorylation prevents its endocytosis in a kinase activity-dependent manner. Erlotinib, an EGFR tyrosine kinase inhibitor, significantly reduced membrane EGFR expression in LPS-activated macrophage. Mechanistically, upon LPS induced TLR4/EGFR phosphorylation, MAPK14 phosphorylated Rab7a at S72 impaired membrane receptor late endocytosis, which maintains EGFR membrane localization though blocking its lysosomal degradation. Meanwhile, Rab5a is also involved in the early endocytosis of EGFR. Subsequently, inhibition of EGFR phosphorylation switches M1 phenotype to M2 phenotype and alleviates sepsis-induced acute lung injury. Mechanistic study demonstrated that Erlotinib suppressed glycolysis-dependent M1 polarization via PKM2/HIF-1ɑ pathway and promoted M2 polarization through up-regulating PPARγ induced glutamine metabolism. Collectively, our data elucidated a more in-depth mechanism of macrophages activation, and provided stronger evidence supporting EGFR as a potential therapeutic target for the treatment of sepsis.


Asunto(s)
Endotoxemia , Sepsis , Humanos , Fosforilación , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Clorhidrato de Erlotinib , Activación de Macrófagos , Receptor Toll-Like 4/metabolismo , Receptores ErbB/metabolismo , Proteínas Tirosina Quinasas/metabolismo
16.
Front Immunol ; 13: 951381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405687

RESUMEN

The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Resistencia a la Insulina , Humanos , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/prevención & control , Caveolina 1 , Miocardio/patología , Insulina/metabolismo , Adiponectina/metabolismo , Diabetes Mellitus/patología
17.
Nanomaterials (Basel) ; 12(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36234669

RESUMEN

The practical application of polymer composites in the electronic and communications industries often requires multi-properties, such as high thermal conductivity (TC), efficient electromagnetic interference (EMI) shielding ability with low electrical conductivity, superior tribological performance, reliable thermal stability and excellent mechanical properties. However, the integration of these mutually exclusive properties is still a challenge, ascribed to their different requirement on the incorporated nanofillers, composite microstructure as well as processing process. Herein, a well-designed boron nitride nanosheet (BN)/graphene nanosheet (GNP)/polyphenylene sulfide (PPS) composite with a dual-segregated structure is fabricated via high-pressure molding. Rather than homogenous mixing of the hybrid fillers, GNP is first coated on PPS particles and followed by encapsulating the conductive GNP layers with insulating BN, forming a BN shell-GNP layer-PPS core composite particles. After hot-pressing, a dual segregated structure is constructed, in which GNP and BN are distinctly separated and arranged in the interfaces of PPS, which on the one hand gives rise to high thermal conductivity, and on the other hand, the aggregated BN layer can act as an "isolation belt" to effectively reduce the electronic transmission. Impressively, high-pressure is loaded and it has a more profound effect on the EMI shielding and thermal conductive properties of PPS composites with a segregated structure than that with homogenous mixed-structure composites. Intriguingly, the synergetic enhancement effect of BN and GNP on both thermal conductive performance and EMI shielding is stimulated by high pressure. Consequently, PPS composites with 30 wt% GNP and 10 wt% BN hot-pressed under 600 MPa present the most superior comprehensive properties with a high TC of 6.4 W/m/K, outstanding EMI SE as high as 70 dB, marvelous tribological performance, reliable thermal stability and satisfactory mechanical properties, which make it promising for application in miniaturized electronic devices in complex environments.

18.
Cell Death Discov ; 8(1): 329, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858921

RESUMEN

Long non-coding RNAs (lncRNAs) were reported to potentially play a regulatory role in the process of myocardial regeneration in the neonatal mouse. N6-methyladenosine (m6A) modification may play a key role in myocardial regeneration in mice and regulates a variety of biological processes through affecting the stability of lncRNAs. However, the map of m6A modification of lncRNAs in mouse cardiac development still remains unknown. We aimed to investigate the differences in the m6A status of lncRNAs during mouse cardiac development and reveal a potential role of m6A modification modulating lncRNAs in cardiac development and myocardial regeneration during cardiac development in mice. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of the heart tissue in C57BL/6 J mice at postnatal day 1 (P1), P7 and P28 were performed to produce stagewise cardiac lncRNA m6A-methylomes in a parallel timeframe with the established loss of an intrinsic cardiac regeneration capacity and early postnatal development. There were significant differences in the distribution and abundance of m6A modifications in lncRNAs in the P7 vs P1 mice. In addition, the functional role of m6A in regulating lncRNA levels was established for selected transcripts with METTL3 silencing in neonatal cardiomyocytes in vitro. Based on our MeRIP-qPCR experiment data, both lncGm15328 and lncRNA Zfp597, that were not previously associated with cardiac regeneration, were found to be the most differently methylated at P1-P7. These two lncRNAs sponged several miRNAs which further regulated multiple mRNAs, including some of which have previously been linked with cardiac regeneration ability. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that differential m6A modifications were more enriched in functions and cellular signalling pathways related to cardiomyocyte proliferation. Our data suggested that the m6A modification on lncRNAs may play an important role in the regeneration of myocardium and cardiac development.

19.
World J Clin Cases ; 10(12): 3720-3728, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35647152

RESUMEN

BACKGROUND: By analyzing the risk factors of postoperative complications in elderly patients with hip replacement, We aimed to develop a nomogram model based on preoperative and intraoperative variables and verified the sensitivity and specificity for risk stratification of postoperative complications in elderly with total hip replacement patients. AIM: To develop a nomogram model for risk stratification of postoperative complications in elderly with total hip replacement patients. METHODS: A total of 414 elderly patients who underwent surgical treatment for total hip replacement hospitalized at the Affiliated Hospital of Guangdong Medical University from March 1, 2017 to August 31, 2019 were included into this study. Univariate and multivariate logistic regression were conducted to identify independent risk factors of postoperative complication in the 414 patients. A nomogram was developed by R software and validated to predict the risk of postoperative complications. RESULTS: Multivariate logistic regression analysis revealed that age (OR = 1.05, 95%CI: 1.00-1.09), renal failure (OR = 0.90, 95%CI: 0.83-0.97), Type 2 diabetes (OR = 1.05, 95%CI: 1.00-1.09), albumin (ALB) (OR = 0.91, 95%CI: 0.83-0.99) were independent risk factors of postoperative complication in elderly patients with hip replacement (P < 0.05). For validation of the nomogram, receive operating characteristic curve revealed that the model predicting postoperative complication in elderly patients with hip replacement was the area under the curve of 0.8254 (95%CI: 0.78-0.87), the slope of the calibration plot was close to 1 and the model passed Hosmer-Lemeshow goodness of fit test (χ 2 = 10.16, P = 0.4264), calibration in R Emax = 0.176, Eavg = 0.027, which all demonstrated that the model was of good accuracy. CONCLUSION: The nomogram predicting postoperative complications in patients with total hip replacement constructed based on age, type 2 diabetes, renal failure and ALB is of good discrimination and accuracy, which was of clinical significance.

20.
Oxid Med Cell Longev ; 2022: 9102978, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35698607

RESUMEN

Ischemia-reperfusion injury (IRI) is closely associated the abnormal expression of long noncoding RNAs (lncRNAs), especially for their regulatory roles in IRI-related angiogenesis. This study applied a hypoxia-reoxygenation (HR) cell model to simulate the IRI condition, as well as RNA sequencing and RNA pull-down experiments to reveal roles of the lncRNA and Stem Cell Inhibitory RNA Transcript (SCIRT), in endothelial angiogenesis. We found that SCIRT was increased under the HR condition and exhibited a high expression correlation with angiogenesis marker VEGFA. RNA-seq data analysis further revealed that VEGFA-related angiogenesis was regulated by SCIRT in HUVECs. Gain and loss of function experiments proved that SCIRT posttranscriptionally regulated VEGFA via affecting its mRNA stability. Furthermore, HuR (ELAVL1), an RNA binding protein (RBP), was identified as a SCIRT-binding partner, which bound and stabilized VEGFA. Moreover, SCIRT promoted HuR expression posttranslationally by inhibiting its ubiquitination under the HR condition. These findings reveal that lncRNA SCIRT can mediate endothelial angiogenesis by stabilizing the VEGFA mRNA via modulating RBP HuR stability under the HR condition.


Asunto(s)
Hipoxia de la Célula , Neovascularización Patológica , ARN Largo no Codificante , Factor A de Crecimiento Endotelial Vascular , Proliferación Celular/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , ARN Largo no Codificante/genética , ARN Mensajero/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...