Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794004

RESUMEN

Addressing common challenges such as limited indicators, poor adaptability, and imprecise modeling in gas pre-warning systems for driving faces, this study proposes a hybrid predictive and pre-warning model grounded in time-series analysis. The aim is to tackle the effects of broad application across diverse mines and insufficient data on warning accuracy. Firstly, we introduce an adaptive normalization (AN) model for standardizing gas sequence data, prioritizing recent information to better capture the time-series characteristics of gas readings. Coupled with the Gated Recurrent Unit (GRU) model, AN demonstrates superior forecasting performance compared to other standardization techniques. Next, Ensemble Empirical Mode Decomposition (EEMD) is used for feature extraction, guiding the selection of the Variational Mode Decomposition (VMD) order. Minimal decomposition errors validate the efficacy of this approach. Furthermore, enhancements to the transformer framework are made to manage non-linearities, overcome gradient vanishing, and effectively analyze long time-series sequences. To boost versatility across different mining scenarios, the Optuna framework facilitates multiparameter optimization, with xgbRegressor employed for accurate error assessment. Predictive outputs are benchmarked against Recurrent Neural Networks (RNN), GRU, Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM), where the hybrid model achieves an R-squared value of 0.980975 and a Mean Absolute Error (MAE) of 0.000149, highlighting its top performance. To cope with data scarcity, bootstrapping is applied to estimate the confidence intervals of the hybrid model. Dimensional analysis aids in creating real-time, relative gas emission metrics, while persistent anomaly detection monitors sudden time-series spikes, enabling unsupervised early alerts for gas bursts. This model demonstrates strong predictive prowess and effective pre-warning capabilities, offering technological reinforcement for advancing intelligent coal mine operations.

2.
Nanotechnology ; 35(10)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38055973

RESUMEN

Seawater splitting is a compelling avenue to produce abundant hydrogen, which requires high-performance and cost-effective catalysts. Constructing bimetallic transition metal phosphides is a feasible strategy to meet the challenge. Here, an amorphous Co-Mo-P film supported on nickel foam (Co-Mo-P/NF) electrode is developed with bifunctional properties for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline seawater. Corresponding results indicate that the introduction of Mo can improve the active sites and regulate the intrinsic activity. Such a Co-Mo-P/NF behaves with prominent electrocatalytic activity towards both HER and OER, demanding low overpotentials of 193 and 352 mV at 100 mA cm‒2in alkaline seawater, respectively. Furthermore, the assembled electrolyzer demands a pronounced overall seawater splitting activity with a low cell voltage of 1.76 V to deliver 100 mA cm-2presenting excellent durability without obvious attenuation after 24 h continuous stability test. This work expands the horizon to develop transition metal-phosphorus electrocatalysts with robust and efficient activity for overall seawater splitting.

3.
Chem Commun (Camb) ; 59(75): 11244-11247, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37656429

RESUMEN

Developing earth-abundant non-noble electrocatalysts with high performance is significant but challenging for the oxygen evolution reaction (OER) in seawater. Herein, a hierarchical electrocatalyst, NiFe-layered double hydroxide (LDH) nanosheet anchored CoS2 nanowires supported on carbon cloth, is developed for efficient OER electrocatalysis in alkaline seawater, demanding a low overpotential of 256 mV to drive a current density of 100 mA cm-2, along with favorable catalytic durability for at least 48 h with negligible decay.

4.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570688

RESUMEN

Seawater electrolysis has great potential to generate clean hydrogen energy, but it is a formidable challenge. In this study, we report CoFe-LDH nanosheet uniformly decorated on a CuO nanowire array on Cu foam (CuO@CoFe-LDH/CF) for seawater oxidation. Such CuO@CoFe-LDH/CF exhibits high oxygen evolution reaction electrocatalytic activity, demanding only an overpotential of 336 mV to generate a current density of 100 mA cm-2 in alkaline seawater. Moreover, it can operate continuously for at least 50 h without obvious activity attenuation.

5.
Inorg Chem ; 62(30): 11746-11750, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37449955

RESUMEN

Constructing efficient and low-cost oxygen evolution reaction (OER) catalysts operating in seawater is essential for green hydrogen production but remains a great challenge. In this study, we report an iron doped cobalt carbonate hydroxide nanowire array on nickel foam (Fe-CoCH/NF) as a high-efficiency OER electrocatalyst. In alkaline seawater, such Fe-CoCH/NF demands an overpotential of 387 mV to drive 500 mA cm-2, superior to that of CoCH/NF (597 mV). Moreover, it achieves excellent electrochemical and structural stability in alkaline seawater.

6.
Anal Chem ; 95(29): 11037-11046, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37450688

RESUMEN

Metal-semiconductor composites are promising candidates for surface-enhanced Raman scattering (SERS) substrates, but their inert basal plane, poor active sites, and limited stability hamper their commercial prospects. Herein, we report a three-dimensional CoP nanowire array decorated with Au nanoparticles on carbon cloth (Au@CoP/CC) as a self-supporting flexible SERS substrate. The Au nanoparticles spontaneously grew on the surface of the CoP nanowire array to form efficient SERS hot spots by a redox reaction with HAuCl4 without any additional reducing agents. Such Au@CoP/CC substrate exhibited a limit of detection of 10-11 M using rhodamine 6G as a model dye with outstanding corrosion resistance ability even under extreme acid and alkali conditions, which is better than many recently reported Au-based SERS substrates. Finite-difference time-domain simulation results demonstrated that Au@CoP/CC can provide a high density of regions with intense local electric field enhancement. Moreover, Au@CoP/CC can degrade target organic dyes for the self-cleaning and reproduction of SERS-active substrates under visible light irradiation. This work provides a novel means of using the plasmonic metal-transition metal phosphide composites for high-performance SERS sensing and photodegradation.

7.
ChemSusChem ; 16(22): e202300505, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37188641

RESUMEN

Electroreduction of nitrite (NO2 - ) to ammonia (NH3 ) provides a sustainable approach to yield NH3 , whilst eliminating NO2 - contaminants. In this study, Ni nanoparticles strutted 3D honeycomb-like porous carbon framework (Ni@HPCF) is fabricated as a high-efficiency electrocatalyst for selective reduction of NO2 - to NH3 . In 0.1 M NaOH with NO2 - , such Ni@HPCF electrode obtains a significant NH3 yield of 12.04 mg h-1 mgcat. -1 and a Faradaic efficiency of 95.1 %. Furthermore, it exhibits good long-term electrolysis stability.

8.
Inorg Chem ; 62(20): 7976-7981, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37144756

RESUMEN

Seawater electrolysis driven by renewable electricity is deemed a promising and sustainable strategy for green hydrogen production, but it is still formidably challenging. Here, we report an iron-doped NiS nanosheet array on Ni foam (Fe-NiS/NF) as a high-performance and stable seawater splitting electrocatalyst. Such Fe-NiS/NF catalyst needs overpotentials of only 420 and 270 mV at 1000 mA cm-2 for the oxygen evolution reaction and hydrogen evolution reaction in alkaline seawater, respectively. Furthermore, its two-electrode electrolyzer needs a cell voltage of 1.88 V for 1000 mA cm-2 with 50 h of long-term electrochemical durability in alkaline seawater. Additionally, in situ electrochemical Raman and infrared spectroscopy were employed to detect the reconstitution process of NiOOH and the generation of oxygen intermediates under reaction conditions.

9.
Small ; 19(30): e2300620, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37058080

RESUMEN

Electroreduction of nitrite (NO2 - ) to valuable ammonia (NH3 ) offers a sustainable and green approach for NH3 synthesis. Here, a Cu3 P@TiO2 heterostructure is rationally constructed as an active catalyst for selective NO2 - -to-NH3 electroreduction, with rich nanosized Cu3 P anchored on a TiO2 nanoribbon array on Ti plate (Cu3 P@TiO2 /TP). When performed in the 0.1 m NaOH with 0.1 m NaNO2 , the Cu3 P@TiO2 /TP electrode obtains a large NH3 yield of 1583.4 µmol h-1  cm-2 and a high Faradaic efficiency of 97.1%. More importantly, Cu3 P@TiO2 /TP also delivers remarkable long-term stability for 50 h electrolysis. Theoretical calculations indicate that intermediate adsorption/conversion processes on Cu3 P@TiO2 interfaces are synergistically optimized, substantially facilitating the conversion of NO2 - -to-NH3 .

10.
Small ; 19(24): e2300291, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919558

RESUMEN

Synthesis of green ammonia (NH3 ) via electrolysis of nitric oxide (NO) is extraordinarily sustainable, but multielectron/proton-involved hydrogenation steps as well as low concentrations of NO can lead to poor activities and selectivities of electrocatalysts. Herein, it is reported that oxygen-defective TiO2 nanoarray supported on Ti plate (TiO2- x /TP) behaves as an efficient catalyst for NO reduction to NH3 . In 0.2 m phosphate-buffered electrolyte, such TiO2- x /TP shows competitive electrocatalytic NH3 synthesis activity with a maximum NH3 yield of 1233.2 µg h-1  cm-2 and Faradaic efficiency of 92.5%. Density functional theory calculations further thermodynamically faster NO deoxygenation and protonation processes on TiO2- x (101) compared to perfect TiO2 (101). And the low energy barrier of 0.7 eV on TiO2- x (101) for the potential-determining step further highlights the greatly improved intrinsic activity. In addition, a Zn-NO battery is fabricated with TiO2- x /TP and Zn plate to obtain an NH3 yield of 241.7 µg h-1  cm-2 while providing a peak power density of 0.84 mW cm-2 .

11.
Small ; 19(17): e2208036, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36717274

RESUMEN

Electrochemical nitrate (NO3 - ) reduction reaction (NO3 - RR) is a potential sustainable route for large-scale ambient ammonia (NH3 ) synthesis and regulating the nitrogen cycle. However, as this reaction involves multi-electron transfer steps, it urgently needs efficient electrocatalysts on promoting NH3  selectivity. Herein, a rational design of Co nanoparticles anchored on TiO2  nanobelt array on titanium plate (Co@TiO2 /TP) is presented as a high-efficiency electrocatalyst for NO3 - RR. Density theory calculations demonstrate that the constructed Schottky heterostructures coupling metallic Co with semiconductor TiO2  develop a built-in electric field, which can accelerate the rate determining step and facilitate NO3 - adsorption, ensuring the selective conversion to NH3 . Expectantly, the Co@TiO2 /TP electrocatalyst attains an excellent Faradaic efficiency of 96.7% and a high NH3  yield of 800.0 µmol h-1  cm-2  under neutral solution. More importantly, Co@TiO2 /TP heterostructure catalyst also presents a remarkable stability in 50-h electrolysis test.

12.
Chemosphere ; 311(Pt 1): 137020, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36330974

RESUMEN

The cobalt nanoparticles decorated biomass Juncus derived carbon (Co@JDC) was prepared by facile calcination strategy and applied to activate peroxymonosulfate (PMS) for eliminating ofloxacin (OFX) in the water environment. The results of catalytic experiments show that 97% of OFX degradation efficiency and 70.4% of chemical oxygen demand removal rate are obtained within 24 min at 0.1 g L-1 Co@JDC, 0.2 g L-1 PMS, 20 mg L-1 OFX (100 mL), and pH = 7, which indicates that Co@JDC/PMS system exhibits excellent performance. Meanwhile, the experimental results of affect factor show that Co@JDC/PMS system can operate in a wider pH range (3-9) and Cl-1, NO3-1, and SO42- have an ignorable effect on OFX degradation. The radical identification experiments confirm that SO4˙-, ·OH, O2˙-, and 1O2 are involved in the process of PMS activation, especially SO4˙- and 1O2 are the main contributors. Furthermore, a possible PMS activation mechanism by Co@JDC was proposed and the degradation pathways of OFX were deduced. Finally, the stable catalytic activity, negligible leaching of Co2+, and the outstanding degradation efficiency for other antibiotics prove that Co@JDC possesses good stability and universality.


Asunto(s)
Cobalto , Nanopartículas , Carbono , Ofloxacino , Biomasa , Peróxidos
13.
J Colloid Interface Sci ; 634: 86-92, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36535172

RESUMEN

Nitrite (NO2-), as a N-containing pollutant, widely exists in aqueous solution, causing a series of environmental and health problems. Electrocatalytic NO2- reduction is a promising and sustainable strategy to remove NO2-, meanwhile, producing high value-added ammonia (NH3). But the NO2- reduction reaction (NO2-RR) involves complex 6-electron transfer process that requires high-efficiency electrocatalysts to accomplish NO2--to-NH3 conversion. Herein, we report NiS2 nanoparticles decorated TiO2 nanoribbon array on titanium mesh (NiS2@TiO2/TM) as a fantastic NO2-RR electrocatalyst for ambient NH3 synthesis. When tested in NO2--containing solution, NiS2@TiO2/TM achieves a satisfactory NH3 yield of 591.9 µmol h-1 cm-2 and a high Faradaic efficiency of 92.1 %. Besides, it shows remarkable stability during 12-h electrolysis test.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Nitritos , Amoníaco , Dióxido de Nitrógeno
14.
Inorg Chem ; 62(1): 25-29, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36537850

RESUMEN

Electrochemical nitrate (NO3-) reduction is a potential approach to produce high-value ammonia (NH3) while removing NO3- pollution, but it requires electrocatalysts with high efficiency and selectivity. Herein, we report the development of Fe3O4 nanoparticles decorated TiO2 nanoribbon array on titanium plate (Fe3O4@TiO2/TP) as an efficient electrocatalyst for NO3--to-NH3 conversion. When operated in 0.1 M phosphate-buffered saline and 0.1 M NO3-, such Fe3O4@TiO2/TP achieves a prominent NH3 yield of 12394.3 µg h-1 cm-2 and a high Faradaic efficiency of 88.4%. In addition, it exhibits excellent stability during long-time electrolysis.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Nitratos , Amoníaco
15.
J Colloid Interface Sci ; 630(Pt A): 714-720, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36274406

RESUMEN

Electrochemical nitrate (NO3-) reduction reaction (NO3RR) possesses two-pronged properties for sustainable ammonia (NH3) synthesis and mitigating NO3- contamination in water. However, the sluggish kinetics for the direct eight-electron NO3--to-NH3 conversion makes a formidable challenge to develop efficient electrocatalysts. Herein, we report a heterostructure of Co3O4 nanosheets decorated TiO2 nanobelt array on titanium plate (Co3O4@TiO2/TP) as an efficient NO3RR electrocatalyst. Both experimental and density theory calculations reveal that the heterostructure of Co3O4@TiO2 establishes a built-in electric field which can optimize the electron migration kinetics, as well as facilitate the adsorption and fixation of NO3- on the electrode surface, ensuring the selectivity to NH3. As expected, the designed Co3O4@TiO2/TP exhibits a remarkable Faradaic efficiency of 93.1 % and a remarkable NH3 yield as high as 875 µmol h-1 cm-2, superior to Co3O4/TP and TiO2/TP. Significantly, it also demonstrates strong electrochemical durability.

16.
J Colloid Interface Sci ; 629(Pt A): 805-812, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36099848

RESUMEN

Direct electrocatalytic reduction of nitrate (NO3-) is an efficient route to simultaneously synthesize ammonia (NH3) and remove NO3- pollutants under ambient conditions, however, it is hindered by the lack of efficient and stable catalysts. Herein, a self-supported spinel-type MnCo2O4 nanowire array is demonstrated for exclusively catalyzing the conversion of NO3- to NH3, achieving a high Faradic efficiency of 97.1% and a large NH3 yield of 0.67 mmol h-1 cm-2. Furthermore, density functional analysis reveals that MnCo2O4 (220) surface has high activity for NO3- reduction with a low energy barrier of 0.46 eV for *NO to *NOH.

17.
Chem Commun (Camb) ; 58(97): 13459-13462, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36385387

RESUMEN

Electrocatalytic nitrate (NO3-) reduction provides us a dual-function strategy for N-contaminant removal and value-added ammonia (NH3) synthesis. However, there is still a lack of efficient electrocatalysts for selective NO3- reduction. Herein, we report the development of Co/N-doped carbon nanospheres derived from an adenine-based metal organic framework (Co@NC) as an attractive electrocatalyst for efficient NH3 synthesis through the reduction of NO3-. Such Co@NC manifests a notable faradaic efficiency of 96.5% and a high NH3 yield of up to 758.0 µmol h-1 mgcat.-1 in 0.1 M NO3--containing 0.1 M NaOH. Moreover, it also demonstrates strong electrochemical stability.

18.
Molecules ; 27(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36364442

RESUMEN

The development of efficient electrochemical seawater splitting catalysts for large-scale hydrogen production is of great importance. In this work, we report an amorphous Co-Mo-B film on Ni foam (Co-Mo-B/NF) via a facile one-step electrodeposition process. Such amorphous Co-Mo-B/NF possesses superior activity with a small overpotential of 199 mV at 100 mA cm-2 for a hydrogen evolution reaction in alkaline seawater. Notably, Co-Mo-B/NF also maintains excellent stability for at least 24 h under alkaline seawater electrolysis.

19.
ACS Appl Mater Interfaces ; 14(41): 46595-46602, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36198136

RESUMEN

Electrocatalytic nitrate reduction reaction (NO3RR) affords a bifunctional character in the carbon-free ammonia synthesis and remission of nitrate pollution in water. Here, we fabricated the Co3O4 nanosheet array with cobalt vacancies on carbon cloth (vCo-Co3O4/CC) by in situ etching aluminum-doped Co3O4/CC, which exhibits an excellent Faradaic efficiency of 97.2% and a large NH3 yield as high as 517.5 µmol h-1 cm-2, better than the pristine Co3O4/CC. Theoretical calculative results imply that the cobalt vacancies can tune the local electronic environment around Co sites of Co3O4, increasing the charge and reducing the electron cloud density of Co sites, which is thus conducive to adsorption of NO3- on Co sites for greatly enhanced nitrate reduction. Furthermore, the vCo-Co3O4 (311) facet presents excellent NO3RR activity with a low energy barrier of about 0.63 eV on a potential-determining step, which is much smaller than pristine Co3O4 (1.3 eV).

20.
Nanoscale ; 14(36): 13073-13077, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36069959

RESUMEN

Electrocatalytic nitrite (NO2-) reduction to ammonia (NH3) can not only synthesize value-added NH3, but also remove NO2- pollutants from the environment. However, the low efficiency of NO2--to-NH3 conversion hinders its applications. Here, Ni nanoparticle-decorated juncus-derived biomass carbon prepared at 800 °C (Ni@JBC-800) serves as an efficient catalyst for NH3 synthesis by selective electroreduction of NO2-. This catalyst shows a remarkable NH3 yield of 4117.3 µg h-1 mgcat.-1 and a large faradaic efficiency of 83.4% in an alkaline electrolyte. The catalytic mechanism is further investigated by theoretical calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...