Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Food Sci Nutr ; 12(4): 2223-2239, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628201

RESUMEN

A growing number of publications have shown that resveratrol has anticancer effects and has become a hotspot in cancer research. The purpose of this study is to analyze the academic results and research trends in resveratrol within the field of anticancer and to predict the future trends in this field. We conducted a literature search for resveratrol in anticancer research from 2003 to 2022 using the Science Citation Index Expanded of the Web of Science Core Collection. The visualization software was used to perform the bibliometric analysis. A total of 1463 publications from 2003 to 2022 were retrieved. China had the highest number of publications. Taipei Medical University became the research institution with the largest number of publications worldwide. The journals with the highest output and co-citation frequency were Molecules and Cancer Research. Levenson, Anait S and Jaeger, Walter published the largest number of papers. Jang, MS was the most co-cited author. Timeline View shows trends and relationship between research topics over time and suggests that the emerging frontier of resveratrol in anticancer may be "resveratrol induces apoptosis." As more and more evidence shows the important role of resveratrol in anticancer, further research on its mechanisms and target discovery may become a major direction for future research. The bibliometric analysis findings of this study will significantly contribute to scholars' comprehensive understanding of the anticancer effects and mechanisms of action of resveratrol, aiding in delineating research hotspots and frontier directions within this field, thereby providing guidance for future investigations.

2.
Plants (Basel) ; 13(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38592791

RESUMEN

The formation and development of tubers, the primary edible and economic organ of potatoes, directly affect their yield and quality. The regulatory network and mechanism of tuberization have been preliminarily revealed in recent years, but plenty of relevant genes remain to be discovered. A few candidate genes were provided due to the simplicity of sampling and result analysis of previous transcriptomes related to tuberization. We sequenced and thoroughly analyzed the transcriptomes of thirteen tissues from potato plants at the tuber proliferation phase to provide more reference information and gene resources. Among them, eight tissues were stolons and tubers at different developmental stages, which we focused on. Five critical periods of tuberization were selected to perform an analysis of differentially expressed genes (DEGs), according to the results of the tissue correlation. Compared with the unswollen stolons (Sto), 2751, 4897, 6635, and 9700 DEGs were detected in the slightly swollen stolons (Sto1), swollen stolons (Sto2), tubers of proliferation stage 1 (Tu1), and tubers of proliferation stage 4 (Tu4). A total of 854 transcription factors and 164 hormone pathway genes were identified in the DEGs. Furthermore, three co-expression networks associated with Sto-Sto1, Sto2-Tu1, and tubers of proliferation stages two to five (Tu2-Tu5) were built using the weighted gene co-expression network analysis (WGCNA). Thirty hub genes (HGs) and 30 hub transcription factors (HTFs) were screened and focalized in these networks. We found that five HGs were reported to regulate tuberization, and most of the remaining HGs and HTFs co-expressed with them. The orthologs of these HGs and HTFs were reported to regulate processes (e.g., flowering, cell division, hormone synthesis, metabolism and signal transduction, sucrose transport, and starch synthesis) that were also required for tuberization. Such results further support their potential to control tuberization. Our study provides insights and countless candidate genes of the regulatory network of tuberization, laying the foundation for further elucidating the genetic basis of tuber development.

3.
ACS Appl Mater Interfaces ; 16(15): 18591-18607, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564431

RESUMEN

Coronavirus disease 2019 (COVID-19) has caused a global pandemic since its onset in 2019, and the development of effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce potent and long-lasting immunity remains a priority. Herein, we prepared two Lactobacillus exopolysaccharide (EPS) nanoparticle adjuvants (NPs 7-4 and NPs 8-2) that were constructed by using sulfation-modified EPS and quaternization-modified chitosan. These two NPs displayed a spherical morphology with sizes of 39 and 47 nm. Furthermore, the zeta potentials of NPs 7-4 and NPs 8-2 were 50.40 and 44.40 mV, respectively. In vitro assays demonstrated that NPs could effectively adsorb antigenic proteins and exhibited a sustained release effect. Mouse immunization tests showed that the NPs induced the expression of cytokines and chemokines at the injection site and promoted the uptake of antigenic proteins by macrophages. Mechanically, the NPs upregulated the expression of pattern recognition receptors (toll-like receptors and nod-like receptors) and activated the immune response of T cells and the production of neutralizing antibodies. In addition, the NP adjuvants had favorable immune-enhancing effects in cats, which are of great significance for controlling the trans-host transmission and re-endemicity of SARS-CoV-2. Overall, we demonstrated that NP-adjuvanted SARS-CoV-2 receptor binding domain proteins could induce robust specific humoral and cellular immunity.


Asunto(s)
COVID-19 , Nanopartículas , Animales , Ratones , Gatos , Vacunas contra la COVID-19 , SARS-CoV-2 , Sulfatos/farmacología , Adyuvantes Inmunológicos/química , Nanopartículas/química , Adyuvantes Farmacéuticos/farmacología , Inmunidad Celular , Vacunas de Subunidad/farmacología
4.
Heliyon ; 10(6): e27634, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533065

RESUMEN

Polycomb group RING finger (PCGF) proteins, a crucial subunits of the Polycomb complex, plays an important role in regulating gene expression, embryonic development, and cell fate determination. In our research, we investigated Pcgf5, one of the six PCGF homologs, and its impact on the differentiation of P19 cells into neural stem cells. Our findings revealed that knockdown of Pcgf5 resulted in a significant decrease in the expression levels of the neuronal markers Sox2, Zfp521, and Pax6, while the expression levels of the pluripotent markers Oct4 and Nanog increased. Conversely, Pcgf5 overexpression upregulated the expression of Sox2 and Pax6, while downregulating the expression of Oct4 and Nanog. Additionally, our analysis revealed that Pcgf5 suppresses Wnt3 expression via the activation of Notch1/Hes1, and ultimately governs the differentiation fate of neural stem cells. To further validate our findings, we conducted in vivo experiments in zebrafish. We found that knockdown of pcgf5a using morpholino resulted in the downregulated expression of neurodevelopmental genes such as sox2, sox3, and foxg1 in zebrafish embryos. Consequently, these changes led to neurodevelopmental defects. In conclusion, our study highlights the important role of Pcgf5 in neural induction and the determination of neural cell fate.

5.
Insect Sci ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511329

RESUMEN

Mosquitoes (Anopheles sinensis), widely geographically distributed in Asia including China, are the primary vector of the malaria parasite Plasmodium vivax and other parasitic diseases such as Malayan filariasis. An. sinensis can survive through low winter temperatures. Aquaporin channels are found in all life forms, where they facilitate environmental adaptation by allowing rapid trans-cellular movement of water (classical aquaporins) or water and solutes such as glycerol (aquaglyceroporins). Here, we identified and characterized 2 aquaporin (AQP) homologs in An. sinensis: AsAQP2 (An. sinensis aquaglyceroporin) and AsAQP4 (An. sinensis aquaporin). When expressed in frog (Xenopus laevis) oocytes, AsAQP2 transported water, glycerol, and urea; AsAQP4 transported only water. Water permeation through AsAQP2 and AsAQP4 was inhibited by mercuric chloride. AsAQP2 expression was slightly higher in adult female mosquitoes than in males, and AsAQP4 expression was significantly higher in adult males. The 2 AsAQPs were highly expressed in Malpighian tubules and midgut. AsAQP2 and AsAQP4 expression was up-regulated by blood feeding compared with sugar feeding. At freezing point (0 °C), the AsAQP4 expression level increased and An. sinensis survival time reduced compared with those at normal temperature (26 °C). At low temperature (8 °C), the AsAQP2 and AsAQP4 expression levels decreased and survival time was significantly longer compared with those at 26 °C. These results suggest that AsAQP2 and AsAQP4 have roles in water homeostasis during blood digestion and in low temperature adaptation of A. sinensis. Together, our results show that the 2 AQPs are important for mosquito diuresis after blood feeding and when exposed to low temperatures.

6.
Hear Res ; 444: 108970, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367458

RESUMEN

The tympanic middle ear is important for anuran hearing on land. However, many species have partly or entirely lost their tympanic apparatus. Previous studies have compared hearing sensitivities in species that possess and lack tympanic membranes capable of sound production and acoustic communication. However, little is known about how these hearing abilities are comparable to those of mutant species. Here, we compared the eardrum and middle ear anatomies of two sympatric sibling species from a noisy stream habitat, namely the "non-vocal" Hainan torrent frog (Amolops hainanensis) and the "vocal" little torrent frog (Amolops torrentis), the latter of which is capable of acoustic communication. Our results showed that the relative (to head size) eardrum diameter of A. hainanensis was smaller than that of A. torrentis, although the absolute size was not smaller. Unlike A. torrentis, the tympanic membrane area of A. hainanensis was not clearly differentiated from the surrounding skin. The middle ear, however, was well-developed in both species. We measured the auditory brainstem responses (ABRs) of A. hainanensis and compared the ABR thresholds and latencies to those previously obtained for A. torrentis. Our results suggested that these two species exhibited significant differences in hearing sensitivity. A. hainanensis (smaller relative eardrum, nonvocal) had higher ABR thresholds and longer initial response times than A. torrentis (larger relative eardrum, vocal) at lower frequencies. Neurophysiological responses from the brain were obtained for tone pips between 800 Hz and 7,000 Hz, with peak sensitivities found at 3,000 Hz (73 dB SPL) for A. hainanensis, and at 1,800 Hz (61 dB SPL) for A. torrentis. Our results suggest that the non-vocal A. hainanensis has lower hearing sensitivity than its vocal sister species (i.e., A. torrentis), which may be related to differences in tympanic or inner ear structure and morphology.


Asunto(s)
Oído Medio , Membrana Timpánica , Animales , Membrana Timpánica/fisiología , Umbral Auditivo/fisiología , Oído Medio/fisiología , Audición/fisiología , Anuros
7.
J Am Heart Assoc ; 13(3): e032079, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38240225

RESUMEN

BACKGROUND: Nitric oxide (NO) is the most important vasodilator secreted by vascular endothelial cells, and its abnormal synthesis is involved in the development of cardiovascular disease. The prenatal period is a critical time for development and largely determines lifelong vascular health in offspring. Given the high incidence and severity of gestational hypoxia in mid-late pregnancy, it is urgent to further explore whether it affects the long-term synthesis of NO in offspring vascular endothelial cells. METHODS AND RESULTS: Pregnant Sprague-Dawley rats were housed in a normoxic or hypoxic (10.5% O2) chamber from gestation days 10 to 20. The thoracic aortas of fetal and adult male offspring were isolated for experiments. Gestational hypoxia significantly reduces the NO-dependent vasodilation mediated by acetylcholine in both the fetal and adult offspring thoracic aorta rings. Meanwhile, acetylcholine-induced NO synthesis is impaired in vascular endothelial cells from hypoxic offspring thoracic aortas. We demonstrate that gestational hypoxic offspring exhibit a reduced endothelial NO synthesis capacity, primarily due to increased expression of NADPH oxidase 2 and enhanced reactive oxygen species. Additionally, gestational hypoxic offspring show elevated levels of miR-155-5p in vascular endothelial cells, which is associated with increased expression of NADPH oxidase 2 and reactive oxygen species generation, as well as impaired NO synthesis. CONCLUSIONS: The present study is the first to demonstrate that gestational hypoxia impairs endothelial NO synthesis via the miR-155-5p/NADPH oxidase 2/reactive oxygen species axis in offspring vessels. These novel findings indicate that the detrimental effects of gestational hypoxia on fetal vascular function can persist into adulthood, providing new insights into the development of vascular diseases.


Asunto(s)
MicroARNs , NADPH Oxidasas , Ratas , Animales , Femenino , Masculino , Embarazo , Especies Reactivas de Oxígeno/metabolismo , NADPH Oxidasas/metabolismo , NADPH Oxidasa 2 , Óxido Nítrico/metabolismo , Acetilcolina/farmacología , Células Endoteliales/metabolismo , Ratas Sprague-Dawley , Hipoxia , MicroARNs/genética , MicroARNs/metabolismo , Endotelio Vascular
8.
Chem Biol Interact ; 387: 110812, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37993079

RESUMEN

Fetal growth restriction (FGR) is a prevalent complication in obstetrics, yet its exact aetiology remains unknown. Numerous studies suggest that the degradation of the living environment is a significant risk factor for FGR. 1-Nitropyrene (1-NP) is a widespread environmental pollutant as a representative substance of nitro-polycyclic aromatic hydrocarbons. In this study, we revealed that 1-NP induced FGR in fetal mice by constructing 1-NP exposed pregnant mice models. Intriguingly, we found that placental trophoblasts of 1-NP exposed mice exhibited significant ferroptosis, which was similarly detected in placental trophoblasts from human FGR patients. In this regard, we established a 1-NP exposed cell model in vitro using two human trophoblast cell lines, HTR8/SVneo and JEG-3. We found that 1-NP not only impaired the proliferation, migration, invasion and angiogenesis of trophoblasts, but also induced severe cellular ferroptosis. Meanwhile, the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively rescued 1-NP-induced trophoblast biological function impairment. Mechanistically, we revealed that 1-NP regulated ferroptosis by activating the ERK signaling pathway. Moreover, we innovatively revealed that CYP1B1 was essential for the activation of ERK signaling pathway induced by 1-NP. Overall, our study innovatively identified ferroptosis as a significant contributor to 1-NP induced trophoblastic functional impairment leading to FGR and clarified the specific mechanism by which 1-NP induced ferroptosis via the CYP1B1/ERK signaling pathway. Our study provided novel insights into the aetiology of FGR and revealed new mechanisms of reproductive toxicity of environmental pollutants.


Asunto(s)
Ferroptosis , Placenta , Pirenos , Animales , Femenino , Humanos , Ratones , Embarazo , Línea Celular Tumoral , Citocromo P-450 CYP1B1/metabolismo , Retardo del Crecimiento Fetal/inducido químicamente , Retardo del Crecimiento Fetal/metabolismo , Placenta/efectos de los fármacos , Placenta/patología , Transducción de Señal , Trofoblastos/metabolismo , Pirenos/toxicidad
9.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013514

RESUMEN

@#[摘 要] 目的:探究茯苓酸(PA)是否通过AKT/MDM2/p53通路影响结直肠癌HCT116细胞的恶性生物学行为。方法:常规培养HCT116细胞,并将其分为对照组、MK-2206(AKT抑制剂)组、PA低浓度(PA-L)组、PA高浓度(PA-H)组、PA-H+ SC79(AKT激活剂)组。CCK-8法、细胞克隆形成实验、流式细胞术、Transwell、qPCR法和WB法实验分别检测各组HCT116细胞的增殖活力,克隆形成能力,细胞凋亡,迁移、侵袭能力,E-cadherin、N-cadherin和vimentin mRNA表达以及AKT/MDM2/p53通路相关蛋白的表达。结果:PA可明显抑制HCT116细胞的增殖活力(P<0.05)、克隆形成能力(P<0.05)、迁移和侵袭能力(P<0.05),诱导其凋亡(P<0.05),抑制N-cadherin、vimentin mRNA的表达(P<0.05),促进E-cadherin mRNA的表达(P<0.05),抑制AKT、MDM2的磷酸化水平(P<0.05),促进p53蛋白的表达(P<0.05);AKT抑制剂MK-2206可模拟PA的作用(均P<0.05),而其激活剂SC79则可逆转PA的作用(均P<0.05)。结论:PA通过调控AKT/MDM2/p53信号通路来抑制HCT116细胞的增殖、迁移和侵袭并诱导其凋亡。

10.
Animals (Basel) ; 13(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38067005

RESUMEN

Jiuzhaigou National Nature Reserve (JNNR) is a renowned World Biosphere Reserve and UNESCO-designated World Nature Heritage Site. The age structure and body size of a population are crucial for assessing the quality of habitats in which a population lives and are essential for the vertebrate conservation and management, especially for amphibians. Unfortunately, information about the life history traits of amphibians is currently unavailable in JNNR. Herein, we first estimated the age structure and body size of Rana kukunoris, which is endemic to the Eastern Qinghai-Xizang Plateau. Then, we compared our data with 28 reported populations along an elevation gradient (1797-3450 m) and investigated how life history traits respond to climatic variations. Our results indicated the following: (1) For individuals from JNNR, the maximum longevity is 8 years, age at sexual maturity (ASM) is 2 years, suggesting a favorable ecological environment in JNNR. Notably, females are significantly larger than males due to the age factor. (2) The average age and ASM show a positive correlation with elevation. However, when the elevation exceeds 3000 m, the average SVL initially increases and then decreases due to the harsh environmental conditions at higher elevation. (3) Temperature and/or UV-B have a significant impact on the average age, ASM, and average SVL variations of R. kukunoris, suggesting adaptive potential of this species via life history variations in light of environmental changes. These accounts provide antecedent information about the life history traits of amphibians in JNNR, and provide insights into the driving factors of the life history variations of the plateau brown frog.

11.
Front Plant Sci ; 14: 1271084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023929

RESUMEN

Potato (Solanum tuberosum L.) is one of the most important tuber food crops in the world; however, the cultivated potatoes are susceptible to high temperature, by which potato production is adversely affected. Understanding the coping mechanism of potato to heat stress is essential to secure yield and expand adaptability under environmental conditions with rising temperature. However, the lack of heat-related information has significantly limited the identification and application of core genes. To gain deeper insights into heat tolerance genes, next-generation sequencing and single-molecule real-time sequencing were used to learn the transcriptional response of potato to heat stress and 13,159 differentially expressed genes (DEGs) were identified in this study. All DEGs were grouped into 12 clusters using the K-means clustering algorithm. Gene Ontology enrichment analysis revealed that they were involved in temperature signaling, phytohormone, and protein modification. Among them, there were 950 differentially expressed transcription factors (DETFs). According to the network analysis of DETFs at the sixth hour under heat stress, we found some genes that were previously reported to be associated with photoperiodic tuberization, StCO (CONSTANS), tuber formation, StBEL11 (BEL1-LIKE 11), and earliness in potato, StCDF1 (CYCLING DOF FACTOR 1) responding to temperature. Furthermore, we verified the relative expression levels using quantitative real-time polymerase chain reaction, and the results were consistent with the inferences from transcriptomes. In addition, there were 22,125 alternative splicing events and 2,048 long non-coding RNAs. The database and network established in this study will extend our understanding of potato response to heat stress. It ultimately provided valuable resources for molecular analysis of heat stress response in potato and cultivation of potato varieties with heat tolerance.

12.
Front Pharmacol ; 14: 1243734, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900164

RESUMEN

Background and aims: Preeclampsia (PE) is the leading cause of maternal and fetal morbidity and mortality worldwide. Apoptosis of trophoblast cells induced by oxidative stress is a principal reason of placental injury in PE. 6-Gingerol, an antioxidant from ginger, plays an important role in many disease models, but its effect on obstetric diseases has not been elucidated. In this study, we investigated the protective effect of 6-gingerol against placental injury. Methods: In vitro hypoxia/reoxygenation (H/R) model of HTR8/Svneo cells and preeclamptic mice model were established to simulate PE. The effects of 6-Gingerol on PE were evaluated by morphological detection, biochemical analysis, and Western blot. Results: We found that H/R treatment induced cell apoptosis, increased the production of reactive oxygen species, malondialdehyde and lactate dehydrogenase, and decreased superoxide dismutase in trophoblast. In addition, the polarization of mitochondrial membrane potential and the cellular calcium flux were also destroyed under H/R condition, which also activated BCL2-interacting protein 3 (BNIP3) and provoked excessive mitophagy. Importantly, 6-Gingerol reversed these corrosive effects. Furthermore, the placenta damage in PE-like mouse caused by the cell apoptosis, oxidative stress and mitophagy was mitigated by 6-Gingerol. Conclusion: These findings suggest that 6-Gingerol exerts a protective effect against placental injury in PE by reducing oxidative stress and inhibiting excessive mitophagy caused by mitochondrial dysfunction.

13.
Respiration ; 102(10): 891-898, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37757757

RESUMEN

INTRODUCTION: Confocal laser endomicroscopy (CLE) has the characteristics of high resolution, real-time imaging, and no radiation, which is helpful for the precise and effective implementation of transbronchial cryobiopsy (TBCB). The study aimed to compare the efficacy and safety of TBCB combined with CLE (CLE group) or fluoroscopy (fluoroscopy group) in the diagnosis of interstitial lung disease (ILD). METHODS: From a prospective randomized controlled trial, 80 patients with undiagnosed ILD or ILD requiring biopsy between January 2022 and November 2022 were randomly assigned to CLE group and fluoroscopy group. The rate to reach an etiological diagnosis of ILD, maximum cross-sectional area of specimens, operation time, and complications were compared between the two groups. RESULTS: The rate to reach an etiological diagnosis in the CLE group was significantly higher than that in the fluoroscopy group (95.0% vs. 80.0%, p < 0.05), but there was no difference in the maximum cross-sectional area of the specimens (42.1 ± 10.1 mm2 vs. 41.5 ± 10.3 mm2, p > 0.05). In terms of operation time, the CLE group was significantly shorter than the fluoroscopy group (37.6 ± 10.6 min vs. 54.8 ± 24.9 min, p < 0.05). The bleeding volume in the CLE group was significantly lower than that in the fluoroscopy group (4.9 ± 3.6 mL/case vs. 9.0 ± 9.2 mL/case, p < 0.05). Further analysis showed that the incidence of moderate bleeding was also lower in the CLE group (20.0% vs. 75.0%, p < 0.001). In addition, the incidence of pneumothorax in the CLE group was significantly lower than that in the fluoroscopy group (0 vs. 25.0%, p < 0.001). CONCLUSIONS: Compared with simple fluoroscopy, the combination of CLE significantly improves the rate of etiological diagnosis, shortens the operation time, and reduces complications such as bleeding and pneumothorax.


Asunto(s)
Broncoscopía , Enfermedades Pulmonares Intersticiales , Humanos , Biopsia/métodos , Broncoscopía/efectos adversos , Broncoscopía/métodos , Hemorragia , Enfermedades Pulmonares Intersticiales/patología , Neumotórax/patología , Estudios Prospectivos
14.
Elife ; 122023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737576

RESUMEN

Epidemiological studies have demonstrated that fine particulate matter (PM2.5) is associated with adverse obstetric and postnatal metabolic health outcomes, but the mechanism remains unclear. This study aimed to investigate the toxicological pathways by which PM2.5 damaged placental trophoblasts in vivo and in vitro. We confirmed that PM2.5 induced adverse gestational outcomes such as increased fetal mortality rates, decreased fetal numbers and weight, damaged placental structure, and increased apoptosis of trophoblasts. Additionally, PM2.5 induced dysfunction of the trophoblast cell line HTR8/SVneo, including in its proliferation, apoptosis, invasion, migration and angiogenesis. Moreover, we comprehensively analyzed the transcriptional landscape of HTR8/SVneo cells exposed to PM2.5 through RNA-Seq and observed that PM2.5 triggered overexpression of pathways involved in oxidative stress and mitochondrial apoptosis to damage HTR8/SVneo cell biological functions through CYP1A1. Mechanistically, PM2.5 stimulated KLF9, a transcription factor identified as binding to CYP1A1 promoter region, which further modulated the CYP1A1-driven downstream phenotypes. Together, this study demonstrated that the KLF9/CYP1A1 axis played a crucial role in the toxic progression of PM2.5 induced adverse pregnancy outcomes, suggesting adverse effects of environmental pollution on pregnant females and putative targeted therapeutic strategies.


Asunto(s)
Placenta , Trofoblastos , Embarazo , Femenino , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/farmacología , Resultado del Embarazo , Estrés Oxidativo , Apoptosis , Movimiento Celular , Proliferación Celular , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
17.
Cell Biochem Biophys ; 81(3): 493-502, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37310618

RESUMEN

Previous studies have confirmed that Platycodon grandiflorus polysaccharide (PGPSt) has the effects of regulating immunity and anti-apoptosis, but its effect on mitochondrial damage and apoptosis caused by PRV infection is still unclear. In this research, the effects of PGPSt on the cell viability, mitochondria morphology, mitochondrial membrane potential and apoptosis caused by PRV based on PK-15 cells were respectively examined by CCK-F assay, Mito-Tracker Red CMXRos, JC-1 staining method and Western blot etc. CCK-F test results showed that PGPSt had a protective effect on the decrease of cell viability caused by PRV. The results of morphological observation found that PGPSt can improve mitochondrial morphology damage, mitochondrial swelling and thickening, and cristae fracture. Fluorescence staining test results showed that PGPSt alleviated the decrease of mitochondrial membrane potential and apoptosis in infected cells. The expression of apoptosis-related proteins showed that PGPSt down-regulated the expression of the pro-apoptotic protein Bax and up-regulated the expression of the anti-apoptotic protein Bcl-2 in infected cells. These results indicated that PGPSt protected against PRV-induced PK-15 cell apoptosis by inhibiting mitochondrial damage.


Asunto(s)
Herpesvirus Suido 1 , Platycodon , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis , Polisacáridos/farmacología
18.
J Mol Cell Cardiol ; 181: 46-56, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37271369

RESUMEN

BACKGROUND: Cerebrovascular disease is one of the leading causes of death worldwide. Middle cerebral artery (MCA) is the largest and most complex of cerebral arteries. The prenatal period is a critical time for development, which largely determines lifelong health. Clinically, glucocorticoids (GCs) administration to accelerate preterm fetal lung maturation has become standard practice. Prenatal GCs administration increases cardiovascular risks in offspring, but little is known regarding the side effects on offspring MCA function. OBJECTIVE: We investigated the alterations of MCA reactivity following prenatal GCs administration in postnatal offspring. METHOD AND RESULTS: Pregnant Sprague-Dawley rats received synthetic GCs (dexamethasone, DEX) during the last week of pregnancy, and we examined vascular reactivity, cellular electrophysiology, and gene promoter epigenetic modifications in the male offspring MCA. Our results showed that prenatal DEX exposure increased the sensitivity of offspring MCA to Angiotensin II, which was resulted from the increased Cav1.2 (L-type Ca2+ channels subunit alpha1 C). Mechanistically, prenatal DEX exposure resulted in a transcriptionally active chromatin structure at the Cav1.2 gene promoter by altering histone modifications. This activation led to increased expression of vascular Cav1.2 gene, ultimately resulting in increased MCA contractility in offspring. CONCLUSION: The present study is the first to demonstrate that the adverse effects of prenatal GCs administration on cerebrovascular tone persist into adulthood, providing new insights into developmental origins of cerebrovascular disease.


Asunto(s)
Trastornos Cerebrovasculares , Efectos Tardíos de la Exposición Prenatal , Ratas , Animales , Embarazo , Humanos , Femenino , Masculino , Ratas Sprague-Dawley , Glucocorticoides/efectos adversos , Trastornos Cerebrovasculares/inducido químicamente , Dexametasona/efectos adversos , Arterias Cerebrales/metabolismo
19.
J Assist Reprod Genet ; 40(7): 1573-1587, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37227568

RESUMEN

PURPOSE: PE is a pregnancy-specific syndrome and one of the main causes of maternal, fetal, and neonatal mortality. PRDX1 is an antioxidant that regulates cell proliferation, differentiation, and apoptosis. The aim of this study is to investigate the effect of PRDX1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. METHODS: Western blotting, RT-qPCR, and immunofluorescence were used to examine the expression of PRDX1 in placentas. PRDX1-siRNA was transfected to knockdown PRDX1 in HTR-8/SVneo cells. The biological function of HTR-8/SVneo cells was detected by wound healing, invasion, tube formation, CCK-8, EdU, flow cytometry, and TUNEL assays. Western blotting was used to detect the protein expression of cleaved-Caspase3, Bax, LC3II, Beclin1, PTEN, and p-AKT. DCFH-DA staining was used to detect ROS levels by flow cytometry. RESULTS: PRDX1 was significantly decreased in placental trophoblasts in PE patients. Following the exposure of HTR-8/SVneo cells to H2O2, PRDX1 expression was significantly decreased, LC3II and Beclin1 expression was notably increased, and ROS level was also markedly increased. PRDX1 knockdown impaired migration, invasion, and tube-formation abilities and promoted apoptosis, which was accompanied by an increased expression of cleaved-Caspase3 and Bax. PRDX1 knockdown induced a significant decrease in LC3II and Beclin1 expression, along with an elevated p-AKT expression and a decreased PTEN expression. PRDX1 knockdown increased intracellular ROS levels, and NAC attenuated PRDX1 knockdown-induced apoptosis. CONCLUSION: PRDX1 regulated trophoblast function through the PTEN/AKT signaling pathway to affect cell autophagy and ROS level, which provided a potential target for the treatment of PE.


Asunto(s)
Preeclampsia , Trofoblastos , Recién Nacido , Humanos , Embarazo , Femenino , Trofoblastos/metabolismo , Placenta/metabolismo , Línea Celular , Proteínas Proto-Oncogénicas c-akt/genética , Proteína X Asociada a bcl-2 , Preeclampsia/genética , Preeclampsia/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/farmacología , Beclina-1/metabolismo , Beclina-1/farmacología , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular , Estrés Oxidativo/genética , Autofagia/genética , Apoptosis
20.
Front Immunol ; 14: 1114620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122710

RESUMEN

Introduction: Gestational diabetes mellitus (GDM), a common complication of pregnancy, is risky for both mother and fetus. Previous studies about TP53-induced glycolysis and apoptosis regulator (TIGAR) focused on the occurrence and development of cancer, cardiovascular disease, and neurological disease, however, it is still unclear whether TIGAR plays a regulatory role in gestational diabetes mellitus (GDM). Methods: Utilizing HG exposure, we explored the role of TIGAR in oxidative stress limitation, excessive inflammatory toxicity defense, and pyroptosis prevention. Results: TIGAR was up-regulated in vivo and in vitro under HG condition, and loss of TIGAR increased ROS in trophoblast cells which drove a phenotypic switch and hindered the capacity of migration, invasion, and tube formation. This switch depended on the increased activation of NLRP3-ASC-caspase-1 signaling, which caused a distinctive characteristic of pyroptosis, and these findings could finally be reverted by antioxidant treatment (NAC) and receptor block (MCC950). Collectively, trophoblast pyroptosis is an upstream event of TIGAR deficiency-induced inflammation, which is promoted by ROS accumulation through NLRP3-ASC inflammasome. Conclusion: Taken together, our results uncovered that, as the upstream event of TIGAR deficiency-induced inflammation, pyroptosis is stimulated by ROS accumulation through NLRP3-ASC inflammasome.


Asunto(s)
Diabetes Gestacional , Inflamasomas , Humanos , Femenino , Embarazo , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Trofoblastos , Caspasa 1 , Especies Reactivas de Oxígeno , Proteínas Reguladoras de la Apoptosis/genética , Caspasas , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...