Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 9: 747972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650959

RESUMEN

The pyrite and marcasite polymorphs of FeS2 have attracted considerable interests for their potential applications in optoelectronic devices because of their appropriate electronic and optical properties. Controversies regarding their fundamental band gaps remain in both experimental and theoretical materials research of FeS2. In this work, we present a systematic theoretical investigation into the electronic band structures of the two polymorphs by using many-body perturbation theory with the GW approximation implemented in the full-potential linearized augmented plane waves (FP-LAPW) framework. By comparing the quasi-particle (QP) band structures computed with the conventional LAPW basis and the one extended by high-energy local orbitals (HLOs), denoted as LAPW + HLOs, we find that one-shot or partially self-consistent GW (G 0 W 0 and GW 0, respectively) on top of the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation with a converged LAPW + HLOs basis is able to remedy the artifact reported in the previous GW calculations, and leads to overall good agreement with experiment for the fundamental band gaps of the two polymorphs. Density of states calculated from G 0 W 0@PBE with the converged LAPW + HLOs basis agrees well with the energy distribution curves from photo-electron spectroscopy for pyrite. We have also investigated the performances of several hybrid functionals, which were previously shown to be able to predict band gaps of many insulating systems with accuracy close or comparable to GW. It is shown that the hybrid functionals considered in general fail badly to describe the band structures of FeS2 polymorphs. This work indicates that accurate prediction of electronic band structure of FeS2 poses a stringent test on state-of-the-art first-principles approaches, and the G 0 W 0 method based on semi-local approximation performs well for this difficult system if it is practiced with well-converged numerical accuracy.

2.
Nat Mater ; 19(5): 528-533, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32094495

RESUMEN

Developing a precise and reproducible bandgap tuning method that enables tailored design of materials is of crucial importance for optoelectronic devices. Towards this end, we report a sphere diameter engineering (SDE) technique to manipulate the bandgap of two-dimensional (2D) materials. A one-to-one correspondence with an ideal linear working curve is established between the bandgap of MoS2 and the sphere diameter in a continuous range as large as 360 meV. Fully uniform bandgap tuning of all the as-grown MoS2 crystals is realized due to the isotropic characteristic of the sphere. More intriguingly, both a decrease and an increase of the bandgap can be achieved by constructing a positive or negative curvature. By fusing individual spheres in the melted state, post-synthesis bandgap adjustment of the supported 2D materials can be realized. This SDE technique, showing good precision, uniformity and reproducibility with high efficiency, may further accelerate the potential applications of 2D materials.

3.
J Phys Chem Lett ; 9(9): 2338-2345, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29669414

RESUMEN

First-principles prediction of electronic band structures of materials is crucial for rational material design, especially in solar-energy-related materials science. Hybrid functionals that mix the Hartree-Fock exact exchange with local or semilocal density functional approximations have proven to be accurate and efficient alternatives to more sophisticated Green's function-based many-body perturbation theory. The optimal fraction of the exact exchange, previously often treated as an empirical parameter, is closely related to the screening strength of the system under study. From a physical point of view, the screening has two extreme forms: the dielectric screening [1/ϵM] that is dominant in wide-gap materials and the Thomas-Fermi metallic screening [exp(-ζ r) ] that is important in narrow-gap semiconductors. In this work, we have systematically investigated the performances of a nonempirical doubly screened hybrid (DSH) functional that considers both screening mechanisms and found that it excels all other existing hybrid functionals and describes the band gaps of narrow-, medium-, and wide-gap insulating systems with comparably good performances.

4.
J Med Chem ; 56(20): 7925-38, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24053646

RESUMEN

Nrf2-mediated activation of ARE regulates expression of cytoprotective enzymes against oxidative stress, inflammation, and carcinogenesis. We have discovered a novel structure (1) as an ARE inducer via luciferase reporter assay to screen the in-house database of our laboratory. The potency of 1 was evaluated by the expression of NQO-1, HO-1, and nuclear translocation of Nrf2 in HCT116 cells. In vivo potency of 1 was studied using AOM-DSS models, showing that the development of colorectal adenomas was significantly inhibited. Administration with 1 lowered the expression of IL-6, IL-1ß, and promoted Nrf2 nuclear translocation. These results indicated that 1 is a potent Nrf2/ARE activator, both in vitro and in vivo. Forty-one derivatives were synthesized for SAR study, and a more potent compound 17 was identified. To our knowledge, this is a potent ARE activator. Besides, its novel structure makes it promising for further optimization.


Asunto(s)
Adenoma/prevención & control , Antineoplásicos/farmacología , Elementos de Respuesta Antioxidante/genética , Neoplasias Colorrectales/prevención & control , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Transporte Activo de Núcleo Celular/efectos de los fármacos , Adenoma/inducido químicamente , Adenoma/patología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Azoximetano , Western Blotting , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/patología , Sulfato de Dextran , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Hemo-Oxigenasa 1/metabolismo , Células Hep G2 , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Compuestos Heterocíclicos con 3 Anillos/química , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Químicos , Estructura Molecular , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA