Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Anal Chem ; 96(27): 11044-11051, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38937378

RESUMEN

Metal nanoclusters (NCs) as a new kind of luminophore have acquired sufficient interest, but their widespread application is restricted on account of their relatively low electrochemiluminescence (ECL) efficiency. Then, aqueous metal NCs with high ECL efficiency were strongly anticipated, especially for the ultrasensitive analysis of biomarkers. Herein, a near-infrared (NIR) ECL biosensing strategy for the test of neuron-specific enolase (NSE) was proposed by utilizing N-acetyl-l-cysteine (NAC)- and cysteamine (Cys)-stabilized gold NCs (NAC/Cys-AuNCs) as ECL emitters with the NIR ECL emission around 860 nm and a metal-organic framework/palladium nanocubes (ZIF-67/PdNCs) hybrid as the coreaction accelerator through their admirable electrocatalytic activity. The NIR emission would reduce photochemical injury to the samples and even realize nondestructive analysis with highly strong susceptibility and suitability. Furthermore, the utilization of ZIF-67/PdNCs could improve the ECL response of NAC/Cys-AuNCs by facilitating the oxidation of the coreactant triethylamine (TEA), leading to the production of a larger quantity of reducing intermediate radical TEA•+. Consequently, NAC/Cys-AuNCs with ZIF-67/PdNCs displayed 2.7 fold enhanced ECL emission compared with the single NAC/Cys-AuNCs using TEA as the coreactant. In addition, HWRGWVC (HWR), a heptapeptide, was introduced to immobilize antibodies for the specially binding Fc fragment of the antibodies, which improved the binding efficiency and sensitivity. As a result, a "signal-on" immunosensor for NSE analysis was obtained with an extensive linear range of 0.1 to 5 ng/mL and a low limit of detection (0.033 fg/mL) (S/N = 3). This study provides a wonderful method for the development of an efficient nondestructive immunoassay.


Asunto(s)
Biomarcadores , Técnicas Electroquímicas , Oro , Mediciones Luminiscentes , Nanopartículas del Metal , Estructuras Metalorgánicas , Oro/química , Estructuras Metalorgánicas/química , Nanopartículas del Metal/química , Inmunoensayo/métodos , Técnicas Electroquímicas/métodos , Biomarcadores/análisis , Cobalto/química , Humanos , Fosfopiruvato Hidratasa/análisis , Límite de Detección , Cisteamina/química , Paladio/química , Rayos Infrarrojos , Técnicas Biosensibles/métodos
2.
Theor Appl Genet ; 137(7): 168, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38909331

RESUMEN

KEY MESSAGE: Key message Three major QTLs for resistance to downy mildew were located within an 0.78 Mb interval on chromosome 8 in foxtail millet. Downy mildew, a disease caused by Sclerospora graminicola, is a serious problem that jeopardizes the yield and quality of foxtail millet. Breeding resistant varieties represents one of the most economical and effective solutions, yet there is a lack of molecular markers related to the resistance. Here, a mapping population comprising of 158 F6:7 recombinant inbred lines (RILs) was constructed from the crossing of G1 and JG21. Based on the specific locus amplified fragment sequencing results, a high-density linkage map of foxtail millet with 1031 bin markers, spanning 1041.66 cM was constructed. Based on the high-density linkage map and the phenotype data in four environments, a total of nine quantitative trait loci (QTL) associated with resistance to downy mildew were identified. Further BSR-seq confirmed the genomic regions containing the potential candidate genes related to downy mildew resistance. Interestingly, a 0.78-Mb interval between C8M257 and C8M268 on chromosome 8 was highlighted because of its presence in three major QTL, qDM8_1, qDM8_2, and qDM8_4, which contains 10 NBS-LRR genes. Haplotype analysis in RILs and natural population suggest that 9 SNP loci on Seita8G.199800, Seita8G.195900, Seita8G.198300, and Seita.8G199300 genes were significantly correlated with disease resistance. Furthermore, we found that those genes were taxon-specific by collinearity analysis of pearl millet and foxtail millet genomes. The identification of these new resistance QTL and the prediction of resistance genes against downy mildew will be useful in breeding for resistant varieties and the study of genetic mechanisms of downy mildew disease resistance in foxtail millet.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Ligamiento Genético , Fenotipo , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Setaria (Planta) , Resistencia a la Enfermedad/genética , Mapeo Cromosómico/métodos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Setaria (Planta)/genética , Setaria (Planta)/microbiología , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Fitomejoramiento , Cromosomas de las Plantas/genética
3.
Int Immunopharmacol ; 134: 112181, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38733829

RESUMEN

BACKGROUND AND AIMS: Previous reports have shown that preventing excessive intestinal epithelial cell (IEC) apoptosis is a crucial approach for protecting the intestinal barrier in patients with Crohn's disease (CD). Magnolin (MGL) has various biological activities, including antiapoptotic activities, but its role in CD has largely not been determined. This study investigated how MGL impacts CD-like colitis and the underlying mechanism involved. METHODS: Mice were treated with TNBS to establish a disease model, and these mice were used to assess the therapeutic effects of MGL on CD-like colitis. TNF-α-treated colon organoids were used to evaluate the impact of MGL on intestinal barrier function and IEC apoptosis. Enrichment analysis was performed to examine the potential pathways through which MGL inhibits IEC apoptosis. Finally, rescue experiments showed the mechanism by which MGL suppresses IEC apoptosis. RESULTS: The animal experiments demonstrated that MGL treatment alleviated the weight loss, colon shortening, elevated disease activity index (DAI) scores, increased colitis histological scores and upregulated inflammatory factor expression that were observed in model mice. MGL ameliorated intestinal barrier dysfunction and the loss of tight junction (TJ) proteins (ZO-1 and Claudin-1) by inhibiting IEC apoptosis in both TNBS-treated mice and TNF-α-treated colon organoids. MGL inhibited the PI3K/AKT signalling pathway, thus safeguarding the intestinal barrier and alleviating CD-like colitis in vivo and in vitro. CONCLUSIONS: MGL improves the intestinal barrier integrity and prevents CD-like colitis by inhibiting IEC apoptosis. The potential mechanism of its anti-apoptotic impact on IECs could be associated with the PI3K/AKT pathway, presenting novel approaches and avenues for the clinical management of CD.


Asunto(s)
Apoptosis , Colitis , Enfermedad de Crohn , Modelos Animales de Enfermedad , Mucosa Intestinal , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Ácido Trinitrobencenosulfónico , Animales , Apoptosis/efectos de los fármacos , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Células Epiteliales/efectos de los fármacos , Masculino , Colon/patología , Colon/efectos de los fármacos
4.
Biosens Bioelectron ; 259: 116422, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797034

RESUMEN

The biology-material hybrid method for chemical-electricity conversion via microbial fuel cells (MFCs) has garnered significant attention in addressing global energy and environmental challenges. However, the efficiency of these systems remains unsatisfactory due to the complex manufacturing process and limited biocompatibility. To overcome these challenges, here, we developed a simple bio-inorganic hybrid system for bioelectricity generation in Shewanella oneidensis (S. oneidensis) MR-1. A biocompatible surface display approach was designed, and silver-binding peptide AgBP2 was expressed on the cell surface. Notably, the engineered Shewanella showed a higher electrochemical sensitivity to Ag+, and a 60 % increase in power density was achieved even at a low concentration of 10 µM Ag+. Further analysis revealed significant upregulations of cell surface negative charge intensity, ATP metabolism, and reducing equivalent (NADH/NAD+) ratio in the engineered S. oneidensis-Ag nanoparticles biohybrid. This work not only provides a novel insight for electrochemical biosensors to detect metal ions, but also offers an alternative biocompatible surface display approach by combining compatible biomaterials with electricity-converting bacteria for advancements in biohybrid MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Shewanella , Plata , Shewanella/metabolismo , Shewanella/química , Fuentes de Energía Bioeléctrica/microbiología , Técnicas Biosensibles/métodos , Plata/química , Materiales Biocompatibles/química , Nanopartículas del Metal/química , Electricidad , Técnicas Electroquímicas/métodos
5.
Anal Chem ; 96(18): 7265-7273, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38649306

RESUMEN

The unique optoelectronic and tunable luminescent characteristics of copper nanoclusters (Cu NCs) make them extremely promising as luminophores. However, the limited luminescence intensity and stability of Cu NCs have restricted their application in the field of electrochemiluminescence (ECL). Herein, a self-assembly-induced enhancement strategy was successfully employed to enhance the cathodic ECL performance of flexible ligand-stabilized Cu NCs. Specifically, Cu NCs form ordered sheetlike structures through intermolecular force. The restriction of ligand torsion in this self-assembled structure leads to a significant improvement in the ECL properties of the Cu NCs. Experimental results demonstrate that the assembled nanoscale Cu NC sheets exhibit an approximately three-fold increase in cathodic ECL emission compared to the dispersed state of Cu NCs. Furthermore, assembled nanoscale Cu NCs sheets were utilized as signal probes in conjunction with a specific short peptide derived from the catalytic structural domain of matrix metalloproteinase 14 (MMP 14) as the identification probe, thereby establishing a split-type ECL sensing platform for the quantification of NMP 14. The investigation has revealed the exceptional performance of assembled nanoscale Cu NCs sheets in ECL analysis, thus positioning them as novel and promising signal probes with significant potential in the field of sensing.


Asunto(s)
Cobre , Técnicas Electroquímicas , Mediciones Luminiscentes , Metaloproteinasa 14 de la Matriz , Nanopartículas del Metal , Cobre/química , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 14 de la Matriz/análisis , Electrodos , Humanos
6.
Toxicology ; 504: 153800, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604440

RESUMEN

Acrylamide (ACR) is an endogenous food contaminant, high levels of ACR have been detected in a large number of foods, causing widespread concern. Since different organism states respond differently to the toxic effects of pollutants, this study establishes an insulin-resistant BRL cell model to explore the differential susceptibility of BRL cells with/without insulin resistance in response to acrylamide-exposure (0.0002, 0.02, or 1 mM) toxicity effects and its mechanism. The results showed that ACR exposure decreased glucose uptake and increased intracellular lipid levels by promoting the expression of fatty acid synthesis, transport, and gluconeogenesis genes and inhibiting the expression of fatty acid metabolism genes, thereby further exacerbating disorders of gluconeogenesis and lipid metabolism in insulin-resistant BRL cells. Simultaneously, its exposure also exacerbated BRL cells with/without insulin-resistant damage. Meanwhile, insulin resistance significantly raised susceptibility to BRL cell response to ACR-induced toxicity. Furthermore, ACR exposure further activated the endoplasmic reticulum stress (ERS) signaling pathway (promoting phosphorylation of PERK, eIF-2α, and IRE-1α) and the apoptosis signaling pathway (activating Caspase-3 and increasing the Bax/Bcl-2 ratio) in BRL cells with insulin-resistant, which were also attenuated after ROS scavenging or ERS signaling pathway blockade. Overall results suggested that ACR evokes a severer toxicity effect on BRL cells with insulin resistance through the overactivation of the ERS signaling pathway.


Asunto(s)
Acrilamida , Estrés del Retículo Endoplásmico , Resistencia a la Insulina , Transducción de Señal , Animales , Ratas , Acrilamida/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Talanta ; 273: 125942, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38513471

RESUMEN

In this work, a reusable DNA sensing microchip was developed for detection of vomitoxin (deoxynivalenol, DON) in sorghum using Cd-based core-shell CdSe@CdS quantum dots (QDs) as promising electrochemiluminescence (ECL) emitter. The size-adjustable aqueous phase CdSe@CdS QDs were prepared through homogeneous method, exhibiting strong cathodic ECL emission with a central wavelength of 520 nm in S2O82- coreactant. And gold nanoparticles-modified iron cobalt cyanide hydrate (Fe-Co-Au) was introduced as an accelerator to amplify the ECL signal. ECL signal was quenched after the formation of a double-stranded (dsDNA) S1-S2 by generating an electron transfer system between the emitter and ferrocene (Fc), which are modified on the aptamer (ssDNA S1) and its complement sequence (ssDNA S2), respectively. When the target DON is presence, the aptamer ssDNA S1 will bind to the DON and trigger the unbinding of double strands DNA and the release of the ssDNA S2, thus the signal can be generated. This approach offers a feasible method for the detection of DON within the range of 1 ng/mL to 200 ng/mL.


Asunto(s)
Técnicas Biosensibles , Cianatos , Nanopartículas del Metal , Puntos Cuánticos , Tricotecenos , Oro , Mediciones Luminiscentes/métodos , ADN , ADN de Cadena Simple , Oligonucleótidos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
8.
Mikrochim Acta ; 191(2): 84, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195951

RESUMEN

A photoelectrochemical (PEC) immunosensor was designed based on MgIn2S4-decorated inorganic halide perovskite CsPbBr3 combined with the signal polarity conversion strategy for neuron-specific enolase (NSE) detection. CsPbBr3 was applied as the basic photoactive material owing to its excellent optical and electronic properties, which provide a good PEC performance for sensor construction. In order to improve the stability of this perovskite, the three-dimensional flower-like MgIn2S4 with a desirable direct band gap was applied to enhance the PEC response. Also, the excellent structure of MgIn2S4 provides large surface-active sites for CsPbBr3 loaded. For enhancing the detection sensitivity of PEC immunosensor, p-type CuInS2 was used as a signal probe which fixed on detection antibody (Ab2). When the target NSE was present, the photogenerated electrons produced by CuInS2 were transferred to the test solution, and the polarity of PEC signal changes. Based on the above photosensitive materials and signal conversion strategy, the proposed PEC immunosensor showed favorable detection performance, and the linear detection range is 0.0001 ~ 100 ng/mL with a 38 fg/mL of detection limit. The proposed strategy improved the adhibition of CsPbBr3 in the analytical chemistry field as well as provided a reference method for other protein detections.


Asunto(s)
Técnicas Biosensibles , Inmunoensayo , Fosfopiruvato Hidratasa , Anticuerpos
9.
Anal Chim Acta ; 1287: 342091, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182343

RESUMEN

BACKGROUND: Carcinoembryonic antigen (CEA) is a significant glycosylated protein, and the unusual expression of CEA in human serum is used as a tumor marker in the clinical diagnosis of many cancers. Although scientists have reported many ways to detect CEA in recent years, such as electrochemistry, photoelectrochemistry, and fluorescence, their operation is complex and sensitivity is average. Therefore, finding a convenient method to accurately detect CEA is significance for the prevention of malignant tumors. With high sensitivity, quick reaction, and low background, electrochemiluminescence (ECL) has emerged as an essential method for the detection of tumor markers in blood. RESULTS: In this work, a "signal on-off" ECL immunosensor for sensitive analysis of CEA ground on the ternary extinction effects of CuFe2O4@PDA-MB towards a self-enhanced Ru(dcbpy)32+ functionalized metal-organic layer [(Hf)MOL-Ru-PEI-Pd] was prepared. The high ECL efficiency of (Hf)MOL-Ru-PEI-Pd originated from the dual intramolecular self-catalysis, including intramolecular co-reaction between polyethylenimine (PEI) and Ru(dcbpy)32+. At the same time, loading Pd NPs onto (Hf)MOL-Ru-PEI could not only improve the electron transfer ability of (Hf)MOL-Ru-PEI, but also provide more active sites for the reaction of Ru(dcbpy)32+ and PEI. In the presence of CEA, CuFe2O4@PDA-MB-Ab2 efficiently quenches the excited states of (Hf)MOL-Ru-PEI-Pd by PDA, Cu2+, and methylene blue (MB) via energy and electron transfer, leading to an ECL signal decrease. Under optimal conditions, the proposed CEA sensing strategy showed satisfactory properties ranging from 0.1 pg mL-1 to 100 ng mL-1 with a detection limit of 20 fg mL-1. SIGNIFICANCE: The (Hf)MOL-Ru-PEI-Pd and CuFe2O4@PDA-MB were prepared in this work might open up innovative directions to synthesize luminescence-functionalized MOLs and effective quencher. Besides, the ECL quenching mechanism of Ru(dcbpy)32+ by MB was successfully explained by the inner filter effect (ECL-IFE). At last, the proposed immunosensor exhibits excellent repeatability, stability, and selectivity, and may provide an attractive way for CEA and other disease markers determination.


Asunto(s)
Técnicas Biosensibles , Antígeno Carcinoembrionario , Humanos , Biomarcadores de Tumor , Antígeno Carcinoembrionario/química , Antígeno Carcinoembrionario/inmunología , Inmunoensayo , Metales , Azul de Metileno , Compuestos Férricos/química , Cobre/química , Rutenio/química
10.
Phytopathology ; 114(1): 73-83, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37535821

RESUMEN

Downy mildew caused by Sclerospora graminicola is a systemic infectious disease affecting foxtail millet production in Africa and Asia. S. graminicola-infected leaves could be decomposed to a state where only the veins remain, resulting in a filamentous leaf tissue symptom. The aim of the present study was to investigate how S. graminicola influences the formation of the filamentous leaf tissue symptoms in hosts at the morphological and molecular levels. We discovered that vegetative hyphae expanded rapidly, with high biomass accumulated at the early stages of S. graminicola infection. In addition, S. graminicola could affect spikelet morphological development at the panicle branch differentiation stage to the pistil and stamen differentiation stage by interfering with hormones and nutrient metabolism in the host, resulting in hedgehog-like panicle symptoms. S. graminicola could acquire high amounts of nutrients from host tissues through secretion of ß-glucosidase, endoglucanase, and pectic enzyme, and destroyed host mesophyll cells by mechanical pressure caused by rapid expansion of hyphae. At the later stages, S. graminicola could rapidly complete sexual reproduction through tryptophan, fatty acid, starch, and sucrose metabolism and subsequently produce numerous oospores. Oospore proliferation and development further damage host leaves via mechanical pressure, resulting in a large number of degraded and extinct mesophyll cells and, subsequently, malformed leaves with only veins left, that is, "filamentous leaf tissue." Our study revealed the S. graminicola expansion characteristics from its asexual to sexual development stages, and the potential mechanisms via which the destructive effects of S. graminicola on hosts occur at different growth stages.


Asunto(s)
Oomicetos , Setaria (Planta) , Proteínas Hedgehog/metabolismo , Enfermedades de las Plantas , Hojas de la Planta
11.
Anal Chem ; 95(47): 17362-17371, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37971307

RESUMEN

The low electrochemiluminescence (ECL) efficiency issue of zirconia (ZrO2) has been a pressing problem since its discovery. In this study, a bandgap-regulated ECL enhancement strategy was developed to improve the ECL efficiency of ZrO2. Specifically, through the calcination of metal-organic frameworks (MOFs), the MOF-derived bimetallic oxide ZrCuO3 was synthesized. Compared to ZrO2, the synthesized ZrCuO3 exhibited a narrower bandgap and higher electron transfer efficiency, leading to enhanced ECL efficiency. Further investigation of the ECL emitter revealed that ZrCuO3 exhibited multimodal ECL emission: annihilation ECL and co-reactant participation ECL (including anodic ECL with tripropylamine as a co-reactant and cathodic ECL with K2S2O8 as a co-reactant). The anodic ECL with the highest efficiency was selected as the main mode for detecting the target in the aptasensor. Annihilation ECL and cathodic ECL served as alternative modes to ensure stability and continuity of the sensing system. Based on the bandgap-regulated strategy of ZrCuO3, a sensing chip with ITO as the working electrode was designed for the sensitive detection of florfenicol (FF). The constructed signal "off-on-off" aptasensor exhibited excellent detection performance for FF in the range of 0.0005-200 ng/mL. The proposed method provided a novel strategy for the analysis of other antibiotics or biomolecules.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Mediciones Luminiscentes/métodos , Fotometría , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección
12.
Front Endocrinol (Lausanne) ; 14: 1255864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920253

RESUMEN

GNASis a complex locus characterized by multiple transcripts and an imprinting effect. It orchestrates a variety of physiological processes via numerous signaling pathways. Human diseases associated with the GNAS gene encompass fibrous dysplasia (FD), Albright's Hereditary Osteodystrophy (AHO), parathyroid hormone(PTH) resistance, and Progressive Osseous Heteroplasia (POH), among others. To facilitate the study of the GNAS locus and its associated diseases, researchers have developed a range of mouse models. In this review, we will systematically explore the GNAS locus, its related signaling pathways, the bone diseases associated with it, and the mouse models pertinent to these bone diseases.


Asunto(s)
Enfermedades Óseas Metabólicas , Osificación Heterotópica , Seudohipoparatiroidismo , Animales , Ratones , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Cromograninas/genética , Seudohipoparatiroidismo/complicaciones , Seudohipoparatiroidismo/genética , Osificación Heterotópica/genética
13.
Biosens Bioelectron ; 242: 115750, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37844387

RESUMEN

MicroRNAs (miRNA) are the potential biomarker for breast cancer, a biosensor for detecting miRNA-21 was successfully prepared by covalently linking carbohydrazide (CON4H6) and tris (4,4 '- dicarboxylic acid-2,2' - bipyridyl) ruthenium dichloride (Ru (dcbpy)32+) as a self-enhanced emitter (Ru-CON4H6). The biosensor was prepared by coating the electrode with mesoporous silica encapsulated Ru-CON4H6 as luminophores (RMSNs) to covalently link a couple of DNA strands (Q1-H2). The RMSNs coated electrode exhibited strong ECL emission due to the intramolecular electron transfer between the electrochemically oxidized Ru (dcbpy)32+ and co-reactant CON4H6. In the presence of target miRNA-21 and an assistant hairpin H1, H2 could be released from the surface through a strand displacement reaction (SDR), and the reserved Q1 could form G-quadruplex upon the addition of K+. The formed G-quadruplex then interacted with Q2-Fc in the presence of Mg2+ to form a DNA complex on the biosensor surface, which quenched the nano-matrixes propped self-enhanced ECL emission through the electron exchange between Fc and electrode or oxidized ECL intermediates. Under optimal conditions, the ECL decrease showed a correlation with target concentration, leading to a biosensing method for sensitive detection of miRNA-21. The proposed ECL method demonstrated a detectable concentration range from 0.1 fM to 1 nM along with a detection limit of 0.03 fM, good accuracy, and acceptable reproducibility, showing that the self-enhanced ECL biosensing strategy supported by nano-matrix provided a new way for the ultrasensitive detection of miRNA, and promoted the development of breast cancer diagnosis.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , MicroARNs , Humanos , Femenino , MicroARNs/química , Técnicas Electroquímicas , Reproducibilidad de los Resultados , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos , Neoplasias de la Mama/diagnóstico , ADN , Límite de Detección
14.
Biosens Bioelectron ; 241: 115710, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769486

RESUMEN

Advanced bioelectronic detection based on the integration of modern optical electronics and biological systems has a broad prospect. The strategy of cathode signal amplification in self-powered photoelectrochemical (PEC) immunosensors with excellent performance is rarely reported in the field of immune analysis. Herein, the work demonstrates a self-powered PEC biosensor formed with BiOI photocathode and WO3/SnS2/ZnS photoanode, and CsPbBr3@COF-V was used as the photocathode signal quenching source for the quantitative monitoring of heart fatty acid binding protein (H-FABP). The high efficiency and stable self-powered biosensor formed not only provides continuous and powerful photocurrent response for bioanalysis through reasonable stepped band structure, but also effectively eliminates the interference of reducing substances. The quenching source CsPbBr3@COF-V greatly affects the photocurrent response due to steric hindrance, weak conductivity, competition with the substrate for dissolved oxygen and excitation light source. And the intervention of this key factor achieves multiple signal amplification effect and opens up an innovative vision for self-powered PEC immunosensor. Taking H-FABP as a representative analyte, the proposed signal amplification self-powered photoelectrochemical presents a broad linear range from 0.0005 to 150 ng/mL with the detection limit of 0.19 pg/mL.

15.
Arch Virol ; 168(8): 199, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37400663

RESUMEN

In this study, a novel single-stranded RNA virus was isolated from the plant-pathogenic fungus Setosphaeria turcica strain TG2, and the virus was named "Setosphaeria turcica ambiguivirus 2" (StAV2). The complete nucleotide sequence of the StAV2 genome was determined using RT-PCR and RLM-RACE. The StAV2 genome comprises 3,000 nucleotides with a G+C content of 57.77%. StAV2 contains two in-frame open reading frames (ORFs) with the potential to produce an ORF1-ORF2 fusion protein via a stop codon readthrough mechanism. ORF1 encodes a hypothetical protein (HP) of unknown function. The ORF2-encoded protein shows a high degree of sequence similarity to the RNA-dependent RNA polymerases (RdRps) of ambiguiviruses. BLASTp searches showed that the StAV2 HP and RdRp share the highest amino acid sequence identity (46.38% and 69.23%, respectively) with the corresponding proteins of a virus identified as "Riboviria sp." isolated from a soil sample. Multiple sequence alignments and phylogenetic analysis based on the amino acid sequences of the RdRp revealed that StAV2 is a new member of the proposed family "Ambiguiviridae".


Asunto(s)
Ascomicetos , Virus Fúngicos , Virus ARN , ARN Viral/genética , ARN Viral/química , Filogenia , Ascomicetos/genética , ARN Polimerasa Dependiente del ARN/genética , Sistemas de Lectura Abierta , Genoma Viral , Virus Fúngicos/genética
16.
Anal Chem ; 95(27): 10178-10185, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37368510

RESUMEN

It is significantly vital to develop a convenient assay method in clinical treatment due to an atypically low abundance (∼5 µM) of bleomycin (BLM) used in clinics. Herein, an electrochemiluminescence (ECL) biosensor using a zirconium-based metal-organic frameworks (Zr-MOFs) as an intramolecular coordination-induced electrochemiluminescence (CIECL) emitter was proposed for sensitive detection of BLM. Zr-MOFs were synthesized using Zr(IV) as metal ions and 4,4',4″-nitrilotribenzoic acid (H3NTB) as ligands for the first time. The H3NTB ligand not only acts as coordination units bonding with Zr(IV) but functions as a coreactant to enhance ECL efficiency rooted in its tertiary nitrogen atoms. Specifically, a long guanine-rich (G-rich) single-stranded DNA (ssDNA) was released by the target-BLM-controlled DNA machine that could perform π-π stacking with another G-quadruplex, ssDNA-rhodamine B (S-RB), by shearing DNA's fixed sites 5'-GC-3' and the auxiliary role of exonuclease III (Exo III). Finally, due to the quenching effect of rhodamine B, a negative correlation trend was obtained between ECL intensity and BLM concentration in the range from 5.0 nM to 50 µM and the limit of detection was 0.50 nM. We believe that it is a promising approach to guide the preparation of CIECL-based functional materials and establishment of analytical methods.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Técnicas Biosensibles/métodos , Circonio , Técnicas Electroquímicas , ADN/química , Bleomicina/análisis , Bleomicina/química
17.
Anal Chem ; 95(22): 8487-8495, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37216427

RESUMEN

To ensure drinking water quality, the development of rapid and accurate analytical methods is essential. Herein, a highly sensitive electrochemiluminescence (ECL) aptasensor-based on the signal on-off-on strategy was developed to detect the water pollutant microcystin-LR (MC-LR). This strategy was based on a newly prepared ruthenium-copper metal-organic framework (RuCu MOF) as the ECL signal-transmitting probe and three types of PdPt alloy core-shell nanocrystals with different crystal structures as signal-off probes. Compounding the copper-based MOF (Cu-MOF) precursor with ruthenium bipyridyl at room temperature facilitated the retention of the intrinsic crystallinity and high porosity of the MOFs as well as afforded excellent ECL performance. Since bipyridine ruthenium in RuCu MOFs could transfer energies to the organic ligand (H3BTC), the ultra-efficient ligand luminescent ECL signal probe was finally obtained, which greatly improved the sensitivity of the aptasensor. To further improve the sensitivity of the aptasensor, the quenching effects of noble metal nanoalloy particles with different crystal states were investigated, which contained PdPt octahedral (PdPtOct), PdPt rhombic dodecahedral (PdPtRD), and PdPt nanocube (PdPtNC). Among them, the PdPtRD nanocrystal exhibited higher activity and excellent durability, stemming from the charge redistribution caused by the hybridization of Pt and Pd atoms. Moreover, PdPtRD could also load more -NH2-DNA strands because it exposed more active sites with a large specific surface area. The fabricated aptasensor exhibited outstanding sensitivity and stability in MC-LR detection, with a linear detection range of 0.0001-50 ng mL-1. This study provides valuable directions for the application of alloy nanoparticles of noble metals and bimetallic MOFs in the field of ECL immunoassay.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Rutenio , Estructuras Metalorgánicas/química , Cobre/química , Rutenio/química , Ligandos , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Aleaciones , Nanopartículas del Metal/química , Límite de Detección
18.
Food Chem ; 420: 136083, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059023

RESUMEN

Covalently modifying electrochemiluminescence (ECL) luminophores to alter their energy levels or generate energy/electron transfer processes for improved performance is hindered by the complex design and fabrication processes. In this study, non-covalent bond self-assembly was employed to enhance the ECL property of gold nanoclusters with tryptophan (Try) and mercaptopropionic acid (MPA) as ligands (Try-MPA-gold nanoclusters). Specifically, through the molecular recognition of Try by cucurbit[7]uril, some non-radiative transition channels of the charge carriers on the surface of the Try-MPA-gold nanoclusters were restricted, resulting in a significant enhancement of the ECL intensity of the nanoclusters. Furthermore, rigid macrocyclic molecules acted on the surface of the nanoclusters through self-assembly, forming a passive barrier that improved the physical stability of the nanoclusters in the water-phase and indirectly improved their luminescent stability. As an application, cucurbit[7]uril-treated Try-MPA-gold nanoclusters (cucurbit[7]uril@Try-MPA-gold nanoclusters) were used as signal probes, and Zn-doped SnO2 nanoflowers (Zn-SnO2 NFs) with high electron mobility were used as electrode modification material to establish an ECL sensor for kanamycin (KANA) detection, utilizing split aptamers as capture probes. The advanced split aptamer sensor demonstrated excellent sensitivity analysis for KANA in complex food substrates with a recovery rate of 96.2 to 106.0%.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Kanamicina , Técnicas Biosensibles/métodos , Mediciones Luminiscentes/métodos , Aptámeros de Nucleótidos/química , Electrodos , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Límite de Detección
19.
Biosensors (Basel) ; 13(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36979578

RESUMEN

As an inflammatory marker, procalcitonin (PCT) is more representative than other traditional inflammatory markers. In this work, a highly efficient photoelectrochemical (PEC) immunosensor was constructed based on the photoactive material Bi2S3/Ag2S to realize the sensitive detection of PCT. Bi2S3 was prepared by a hydrothermal method, and Ag2S quantum dots were deposited on the ITO/Bi2S3 surface via in situ reduction. Bi2S3 is a kind of admirable photoelectric semiconductor nanomaterial on account of its moderate bandgap width and low binding rate of photogenerated electron holes, which can effectively convert light energy into electrical energy. Therefore, based on the energy level matching principle of Bi2S3 and Ag2S, a labeled Bi2S3/Ag2S PEC immunosensor was constructed, and the sensitive detection of PCT was successfully established. The linear detection range of the PEC immunosensor was 0.50 pg∙mL-1 to 50 ng∙mL-1, and the minimum detection limit was 0.18 pg∙mL-1. Compared with the traditional PEC strategy, the proposed PEC immunosensor is simple, convenient, and has good anti-interference, sensitivity, and specificity, which could provide a meaningful theoretical basis and reference value for the clinical detection of PCT.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Técnicas Electroquímicas/métodos , Polipéptido alfa Relacionado con Calcitonina , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Límite de Detección
20.
Anal Chim Acta ; 1253: 341076, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965992

RESUMEN

The successful application of electrochemiluminescence (ECL) in immunoassay for clinical diagnosis requires improving sensitivity and accuracy. Herein was reported an ECL analytical model based zinc-based metal-organic frameworks of ruthenium hybrid (RuZn MOFs) as the signal emitter. To enlarge the output difference, the quenching effect of three different noble metal nanoparticles included palladium seeds (Pdseeds), palladium octahedrons (Pdoct), and Pt-based palladium (Pd@Ptoct) core-shell were researched. Among them, Pd@Ptoct core-shell possessed higher activity and improved durability than Pd-only (NPs), they could load more protein macromolecules amicably and stabilized in the analysis system. Furthermore, since the charge redistribution owing to the hybridization of the Pt and Pd atoms in Pd@Ptoct, it could generate the electron flow maximumly from the emitter RuZn MOFs to Pd@Ptoct and result in the enhancement of quenching ECL. And the UV absorption of noble metal nanoparticles overlapped with the ECL emission of RuZn MOFs to varying degrees, which caused the behavior of resonance energy transfer (RET) reaction at the same time. This would greatly promote the sensitivity of this ECL system compared with the traditional single quenching mechanism. Based on this, a signal-off immunsensor was constructed to sensitive detection of D-dimer with linearity range from 0.001 to 200 ng mL-1, limit of detection (LOD) was 0.20 pg mL-1 and provide a further theoretical basis for the clinical application of ECL technology.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Rutenio , Zinc , Paladio , Inmunoensayo , Mediciones Luminiscentes , Técnicas Electroquímicas , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...