Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1420883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026686

RESUMEN

In recent years, the relationship between vitamin D and allergic diseases has received widespread attention. As a fat-soluble vitamin, vitamin D plays a crucial role in regulating the immune system and may influence the onset and progression of diseases such as atopic dermatitis, allergic rhinitis, and asthma. To understand the underlying mechanisms, we have summarized the current research on the association between vitamin D and allergic diseases. We also discuss the impact of vitamin D on the immune system and its role in the course of allergic diseases, particularly focusing on how vitamin D supplementation affects the treatment outcomes of these conditions. We aim to provide a theoretical basis and practical guidance for optimizing the management and treatment of allergic diseases by modulating vitamin D levels.


Asunto(s)
Hipersensibilidad , Vitamina D , Humanos , Vitamina D/uso terapéutico , Hipersensibilidad/inmunología , Animales , Suplementos Dietéticos , Deficiencia de Vitamina D/inmunología , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/complicaciones
2.
RSC Adv ; 14(14): 9668-9677, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38525063

RESUMEN

In magnesium-sulfur batteries, electrolyte exploration is vital for developing high-energy-density, safe, and reliable batteries. This study focused on cyclic THF and chain DME, representative solvents in ether electrolytes. MgCl2, an ideal anionic salt, forms mono-nuclear (MgCl2(DME)2), bi-nuclear ([Mg2(µ-Cl)2(DME)4]2+), and tri-nuclear ([Mg3(µ-Cl)4(DME)5]2+) complexes in DME. With increasing salt concentration, these complexes sequentially form. Under lower salt concentrations, THF and MgCl2 form mono-nuclear complexes ([MgCl2(THF)4]) and continue to form bi-nuclear complexes ([Mg2(µ-Cl)3(THF)6]+). However, at higher salt concentrations, bi-nuclear complexes ([Mg2(µ-Cl)3(THF)6]+) directly form in THF. Comparing HOMO-LUMO values, [Mg(DME)3]2+ is easily oxidized. Energy gaps decrease with Cl- ion addition, enhancing solution conductivity. Ratios of Mg2+ and Cl- in S-reduction complexes differ, suggesting DME is better at a low Mg/Cl ratio, and THF at a high Mg/Cl ratio. This study contributes to understanding complexes and enhancing Mg-S battery performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA