Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Small ; : e2402725, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837316

RESUMEN

Unveiling the inherent link between polysulfide adsorption and catalytic activity is key to achieving optimal performance in Lithium-sulfur (Li-S) batteries. Current research on the sulfur reaction process mainly relies on the strong adsorption of catalysts to confine lithium polysulfides (LiPSs) to the cathode side, effectively suppressing the shuttle effect of polysulfides. However, is strong adsorption always correlated with high catalysis? The inherent relationship between adsorption and catalytic activity remains unclear, limiting the in-depth exploration and rational design of catalysts. Herein, the correlation between "d-band center-adsorption strength-catalytic activity" in porous carbon nanofiber catalysts embedded with different transition metals (M-PCNF-3, M = Fe, Co, Ni, Cu) is systematically investigated, combining the d-band center theory and the Sabatier principle. Theoretical calculations and experimental analysis results indicate that Co-PCNF-3 electrocatalyst with appropriate d-band center positions exhibits moderate adsorption capability and the highest catalytic conversion activity for LiPSs, validating the Sabatier relationship in Li-S battery electrocatalysts. These findings provide indispensable guidelines for the rational design of more durable cathode catalysts for Li-S batteries.

2.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826217

RESUMEN

Imaging complex, non-planar anatomies with optical coherence tomography (OCT) is limited by the optical field of view (FOV) in a single volumetric acquisition. Combining linear mechanical translation with OCT extends the FOV but suffers from inflexibility in imaging non-planar anatomies. We report the freeform robotic OCT to fill this gap. To address challenges in volumetric reconstruction associated with the robotic movement accuracy being two orders of magnitudes worse than OCT imaging resolution, we developed a volumetric registration algorithm based on simultaneous localization and mapping (SLAM) to overcome this limitation. We imaged the entire aqueous humor outflow pathway, whose imaging has the potential to customize glaucoma surgeries but is typically constrained by the FOV, circumferentially in mice as a test. We acquired volumetric OCT data at different robotic poses and reconstructed the entire anterior segment of the eye. The reconstructed volumes showed heterogeneous Schlemm's canal (SC) morphology in the reconstructed anterior segment and revealed a segmental nature in the circumferential distribution of collector channels (CC) with spatial features as small as a few micrometers.

3.
Adv Sci (Weinh) ; : e2402448, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877647

RESUMEN

The utilization of diverse energy storage devices is imperative in the contemporary society. Taking advantage of solar power, a significant environmentally friendly and sustainable energy resource, holds great appeal for future storage of energy because it can solve the dilemma of fossil energy depletion and the resulting environmental problems once and for all. Recently, photo-assisted energy storage devices, especially photo-assisted rechargeable metal batteries, are rapidly developed owing to the ability to efficiently convert and store solar energy and the simple configuration, as well as the fact that conventional Li/Zn-ion batteries are widely commercialized. Considering many puzzles arising from the rapid development of photo-assisted rechargeable metal batteries, this review commences by introducing the fundamental concepts of batteries and photo-electrochemistry, followed by an exploration of the current advancements in photo-assisted rechargeable metal batteries. Specifically, it delves into the elucidation of device components, operating principles, types, and practical applications. Furthermore, this paper categorizes, specifies, and summarizes several detailed examples of photo-assisted energy storage devices. Lastly, it addresses the challenges and bottlenecks faced by these energy storage systems while providing future perspectives to facilitate their transition from laboratory research to industrial implementation.

4.
Exp Dermatol ; 33(6): e15119, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881438

RESUMEN

This manuscript presents a comprehensive investigation into the role of lactate metabolism-related genes as potential prognostic markers in skin cutaneous melanoma (SKCM). Bulk-transcriptome data from The Cancer Genome Atlas (TCGA) and GSE19234, GSE22153, and GSE65904 cohorts from GEO database were processed and harmonized to mitigate batch effects. Lactate metabolism scores were assigned to individual cells using the 'AUCell' package. Weighted Co-expression Network Analysis (WGCNA) was employed to identify gene modules correlated with lactate metabolism. Machine learning algorithms were applied to construct a prognostic model, and its performance was evaluated in multiple cohorts. Immune correlation, mutation analysis, and enrichment analysis were conducted to further characterize the prognostic model's biological implications. Finally, the function of key gene NDUFS7 was verified by cell experiments. Machine learning resulted in an optimal prognostic model, demonstrating significant prognostic value across various cohorts. In the different cohorts, the high-risk group showed a poor prognosis. Immune analysis indicated differences in immune cell infiltration and checkpoint gene expression between risk groups. Mutation analysis identified genes with high mutation loads in SKCM. Enrichment analysis unveiled enriched pathways and biological processes in high-risk SKCM patients. NDUFS7 was found to be a hub gene in the protein-protein interaction network. After the expression of NDUFS7 was reduced by siRNA knockdown, CCK-8, colony formation, transwell and wound healing tests showed that the activity, proliferation and migration of A375 and WM115 cell lines were significantly decreased. This study offers insights into the prognostic significance of lactate metabolism-related genes in SKCM.


Asunto(s)
Ácido Láctico , Aprendizaje Automático , Melanoma , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Melanoma/genética , Melanoma/metabolismo , Pronóstico , Ácido Láctico/metabolismo , Análisis de la Célula Individual , Mutación , Transcriptoma , Melanoma Cutáneo Maligno , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética
5.
J Cell Mol Med ; 28(11): e18408, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837585

RESUMEN

We employed single-cell analysis techniques, specifically the inferCNV method, to dissect the complex progression of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) through minimally invasive adenocarcinoma (MIA) to invasive adenocarcinoma (IAC). This approach enabled the identification of Cluster 6, which was significantly associated with LUAD progression. Our comprehensive analysis included intercellular interaction, transcription factor regulatory networks, trajectory analysis, and gene set variation analysis (GSVA), leading to the development of the lung progression associated signature (LPAS). Interestingly, we discovered that the LPAS not only accurately predicts the prognosis of LUAD patients but also forecasts genomic alterations, distinguishes between 'cold' and 'hot' tumours, and identifies potential candidates suitable for immunotherapy. PSMB1, identified within Cluster 6, was experimentally shown to significantly enhance cancer cell invasion and migration, highlighting the clinical relevance of LPAS in predicting LUAD progression and providing a potential target for therapeutic intervention. Our findings suggest that LPAS offers a novel biomarker for LUAD patient stratification, with significant implications for improving prognostic accuracy and guiding treatment decisions.


Asunto(s)
Adenocarcinoma del Pulmón , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Genómica , Neoplasias Pulmonares , Análisis de la Célula Individual , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Pronóstico , Análisis de la Célula Individual/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Genómica/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Redes Reguladoras de Genes , Línea Celular Tumoral , Perfilación de la Expresión Génica , Invasividad Neoplásica
6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 236-246, 2024 Feb 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38755719

RESUMEN

OBJECTIVES: Hypoxia is a common pathological phenomenon, usually caused by insufficient oxygen supply or inability to use oxygen effectively. Hydroxylated and methoxylated flavonoids have significant anti-hypoxia activity. This study aims to explore the synthesis, antioxidant and anti-hypoxia activities of 6-hydroxygenistein (6-OHG) and its methoxylated derivatives. METHODS: The 6-OHG and its methoxylated derivatives, including 4',6,7-trimethoxy-5-hydroxyisoflavone (compound 3), 4',5,6,7-tetramethoxyisoflavone (compound 4), 4',6-imethoxy-5,7-dihydroxyisoflavone (compound 6), and 4'-methoxy-5,6,7-trihydroxyisoflavone (compound 7), were synthesized by methylation, bromination, methoxylation, and demethylation using biochanin A as raw material. The structure of these products were characterized by 1hydrogen-nuclear magnetic resonance spectroscopy (1H-NMR) and mass spectrometry (MS). The purity of these compounds was detected by high pressure chromatography (HPLC). The antioxidant activity in vitro was investigated by 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) free radical scavenging assay. PC12 cells were divided into a normal group, a hypoxia model group, rutin (1×10-9-1×10-5 mol/L) groups, and target compounds (1×10-9-1×10-5 mol/L) groups under normal and hypoxic conditions. Cell viability was detected by cell counting kit-8 (CCK-8) assay, the target compounds with excellent anti-hypoxia activity and the drug concentration at the maximum anti-hypoxia activity were screened. PC12 cells were treated with the optimal concentration of the target compound or rutin with excellent anti-hypoxia activity, and the cell morphology was observed under light microscope. The apoptotic rate was determined by flow cytometry, and the expressions of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were detected by Western blotting. RESULTS: The structure of 6-OHG and its 4 methylated derivatives were correct, and the purity was all more than 97%. When the concentration was 4 mmol/L, the DPPH free radical removal rates of chemical compounds 7 and 6-OHG were 81.16% and 86.94%, respectively, which were higher than those of rutin, the positive control. The removal rates of chemical compounds 3, 4, and 6 were all lower than 20%. Compared with the normal group, the cell viability of the hypoxia model group was significantly decreased (P<0.01). Compared with the hypoxia model group, compounds 3, 4, and 6 had no significant effect on cell viability under hypoxic conditions. At all experimental concentrations, the cell viability of the 6-OHG group was significantly higher than that of the hypoxia model group (all P<0.05). The cell viability of compound 7 group at 1×10-7 and 1×10-6 mol/L was significantly higher than that of the hypoxia model group (both P<0.05). The anti-hypoxia activity of 6-OHG and compound 7 was excellent, and the optimal drug concentration was 1×10-6 and 1×10-7 mol/L. After PC12 cells was treated with 6-OHG (1×10-6 mol/L) and compound 7 (1×10-7 mol/L), the cell damage was reduced, the apoptotic rate was significantly decreased (P<0.01), and the protein expression levels of HIF-1α and VEGF were significantly decreased in comparison with the hypoxia model group (both P<0.01). CONCLUSIONS: The optimized synthesis route can increase the yield of 6-OHG and obtain 4 derivatives by methylation and selective demethylation. 6-OHG and compound 7 have excellent antioxidant and anti-hypoxia activities, which are related to the structure of the A-ring ortho-triphenol hydroxyl group in the molecule.


Asunto(s)
Antioxidantes , Antioxidantes/farmacología , Antioxidantes/síntesis química , Ratas , Animales , Células PC12 , Metilación , Hipoxia de la Célula/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Isoflavonas/farmacología , Isoflavonas/síntesis química , Isoflavonas/química , Flavonas/farmacología
7.
Sci Rep ; 14(1): 11485, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769391

RESUMEN

This study intends to use the basic information and blood routine of schistosomiasis patients to establish a machine learning model for predicting liver fibrosis. We collected medical records of Schistosoma japonicum patients admitted to a hospital in China from June 2019 to June 2022. The method was to screen out the key variables and six different machine learning algorithms were used to establish prediction models. Finally, the optimal model was compared based on AUC, specificity, sensitivity and other indicators for further modeling. The interpretation of the model was shown by using the SHAP package. A total of 1049 patients' medical records were collected, and 10 key variables were screened for modeling using lasso method, including red cell distribution width-standard deviation (RDW-SD), Mean corpuscular hemoglobin concentration (MCHC), Mean corpuscular volume (MCV), hematocrit (HCT), Red blood cells, Eosinophils, Monocytes, Lymphocytes, Neutrophils, Age. Among the 6 different machine learning algorithms, LightGBM performed the best, and its AUCs in the training set and validation set were 1 and 0.818, respectively. This study established a machine learning model for predicting liver fibrosis in patients with Schistosoma japonicum. The model could help improve the early diagnosis and provide early intervention for schistosomiasis patients with liver fibrosis.


Asunto(s)
Cirrosis Hepática , Aprendizaje Automático , Schistosoma japonicum , Esquistosomiasis Japónica , Humanos , Cirrosis Hepática/sangre , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/parasitología , Cirrosis Hepática/patología , Esquistosomiasis Japónica/diagnóstico , Esquistosomiasis Japónica/sangre , Masculino , Femenino , Persona de Mediana Edad , Adulto , Animales , China , Índices de Eritrocitos , Algoritmos , Anciano
8.
PNAS Nexus ; 3(2): pgae028, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38725530

RESUMEN

Urban sustainability is a key to achieving the UN sustainable development goals (SDGs). Secure and efficient provision of food, energy, and water (FEW) resources is a critical strategy for urban sustainability. While there has been extensive discussion on the positive effects of the FEW nexus on resource efficiency and climate impacts, measuring the extent to which such synergy can benefit urban sustainability remains challenging. Here, we have developed a systematic and integrated optimization framework to explore the potential of the FEW nexus in reducing urban resource demand and greenhouse gas (GHG) emissions. Demonstrated using the Metropolis Beijing, we have identified that the optimized FEW nexus can reduce resource consumption and GHG emissions by 21.0 and 29.1%, respectively. These reductions come with increased costs compared to the siloed FEW management, but it still achieved a 16.8% reduction in economic cost compared to the business-as-usual scenario. These findings underscore the significant potential of FEW nexus management in enhancing urban resource efficiency and addressing climate impacts, while also identifying strategies to address trade-offs and increase synergies.

9.
Front Immunol ; 15: 1366096, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596689

RESUMEN

Background: The tumor microenvironment (TME) plays a pivotal role in the progression and metastasis of lung adenocarcinoma (LUAD). However, the detailed characteristics of LUAD and its associated microenvironment are yet to be extensively explored. This study aims to delineate a comprehensive profile of the immune cells within the LUAD microenvironment, including CD8+ T cells, CD4+ T cells, and myeloid cells. Subsequently, based on marker genes of exhausted CD8+ T cells, we aim to establish a prognostic model for LUAD. Method: Utilizing the Seurat and Scanpy packages, we successfully constructed an immune microenvironment atlas for LUAD. The Monocle3 and PAGA algorithms were employed for pseudotime analysis, pySCENIC for transcription factor analysis, and CellChat for analyzing intercellular communication. Following this, a prognostic model for LUAD was developed, based on the marker genes of exhausted CD8+ T cells, enabling effective risk stratification in LUAD patients. Our study included a thorough analysis to identify differences in TME, mutation landscape, and enrichment across varying risk groups. Moreover, by integrating risk scores with clinical features, we developed a new nomogram. The expression of model genes was validated via RT-PCR, and a series of cellular experiments were conducted, elucidating the potential oncogenic mechanisms of GALNT2. Results: Our study developed a single-cell atlas for LUAD from scRNA-seq data of 19 patients, examining crucial immune cells in LUAD's microenvironment. We underscored pDCs' role in antigen processing and established a Cox regression model based on CD8_Tex-LAYN genes for risk assessment. Additionally, we contrasted prognosis and tumor environments across risk groups, constructed a new nomogram integrating clinical features, validated the expression of model genes via RT-PCR, and confirmed GALNT2's function in LUAD through cellular experiments, thereby enhancing our understanding and approach to LUAD treatment. Conclusion: The creation of a LUAD single-cell atlas in our study offered new insights into its tumor microenvironment and immune cell interactions, highlighting the importance of key genes associated with exhausted CD8+ T cells. These discoveries have enabled the development of an effective prognostic model for LUAD and identified GALNT2 as a potential therapeutic target, significantly contributing to the improvement of LUAD diagnosis and treatment strategies.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Linfocitos T CD8-positivos , Nomogramas , Neoplasias Pulmonares/genética , Microambiente Tumoral , Lectinas Tipo C
10.
Environ Toxicol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622884

RESUMEN

Lung adenocarcinoma (LUAD) generally presents as an immunosuppressive microenvironment. The characteristics of cell-to-cell communication in the LUAD microenvironment has been unclear. In this study, the LUAD bulk RNA-seq data and single-cell RNA-seq data were retrieved from public dataset. Differential expression genes (DEGs) between LUAD tumor and adjacent non-tumor tissues were calculated by limma algorithm, and then detected by PPI, KEGG, and GO analysis. Cell-cell interactions were explored using the single-cell RNA-seq data. Finally, the first 15 CytoHubba genes were used to establish related pathways and these pathways were used to characterize the immune-related ligands and their receptors in LUAD. Our analyses showed that monocytes or macrophages interact with tissue stem cells and NK cells via SPP1 signaling pathway and tissue stem cells interact with T and B cells via CXCL signaling pathway in different states. Hub genes of SPP1 participated in SPP1 signaling pathway, which was negatively correlated with CD4+ T cell and CD8+ T cell. The expression of SPP1 in LUAD tumor tissues was negatively correlated with the prognosis. While CXCL12 participated in CXCL signaling pathway, which was positively correlated with CD4+ T cell and CD8+ T cell. The role of CXCL12 in LUAD tumor tissues exhibits an opposite effect to that of SPP1. This study reveals that tumor-associated monocytes or macrophages may affect tumor progression. Moreover, the SPP1 and CXCL12 may be the critic genes of cell-to-cell communication in LUAD, and targeting these pathways may provide a new molecular mechanism for the treatment of LUAD.

11.
Exp Dermatol ; 33(4): e15070, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570935

RESUMEN

Cutaneous melanoma poses a formidable challenge within the field of oncology, marked by its aggressive nature and capacity for metastasis. Despite extensive research uncovering numerous genetic and molecular contributors to cutaneous melanoma development, there remains a critical knowledge gap concerning the role of lipids, notably low-density lipoprotein (LDL), in this lethal skin cancer. This article endeavours to bridge this knowledge gap by delving into the intricate interplay between LDL metabolism and cutaneous melanoma, shedding light on how lipids influence tumour progression, immune responses and potential therapeutic avenues. Genes associated with LDL metabolism were extracted from the GSEA database. We acquired and analysed single-cell sequencing data (GSE215120) and bulk-RNA sequencing data, including the TCGA data set, GSE19234, GSE22153 and GSE65904. Our analysis unveiled the heterogeneity of LDL across various cell types at the single-cell sequencing level. Additionally, we constructed an LDL-related signature (LRS) using machine learning algorithms, incorporating differentially expressed genes and highly correlated genes. The LRS serves as a valuable tool for assessing the prognosis, immunity and mutation status of patients with cutaneous melanoma. Furthermore, we conducted experiments on A375 and WM-115 cells to validate the function of PPP2R1A, a pivotal gene within the LRS. Our comprehensive approach, combining advanced bioinformatics analyses with an extensive review of current literature, presents compelling evidence regarding the significance of LDL within the cutaneous melanoma microenvironment.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Pronóstico , Algoritmos , Aprendizaje Automático , Perfilación de la Expresión Génica , Lípidos , Microambiente Tumoral/genética
12.
JBI Evid Implement ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38557502

RESUMEN

INTRODUCTION AND OBJECTIVES: Kidney transplantation is an effective treatment for end-stage kidney disease. Kidney transplant recipients (KTRs) are prone to experiencing reduced physical function, depression, fatigue, and lack of exercise motivation due to their sedentary lifestyle before surgery. Exercise is an effective intervention for KTRs, but it has not been properly implemented in many practice settings. This project aimed to promote evidence-based exercises as part of KTRs' rehabilitation to improve their health outcomes. METHODS: This project was informed by the JBI Evidence Implementation Framework. The project was conducted in the organ transplant ward of a tertiary comprehensive hospital in Changsha, China. Based on a summary of best evidence, 12 audit criteria were developed for the baseline and follow-up audits involving 30 patients and 20 nursing staff. The JBI Practical Application of Clinical Evidence System (PACES) and Getting Research into Practice (GRiP) tool were used to identify barriers and facilitators and develop targeted strategies to improve issues. RESULTS: Compared with the baseline audit, significant improvements were achieved in most of the criteria in the follow-up audit, with 9 of the 12 criteria reaching 100% compliance. Notably, the 6-minute walk distance test results were significantly higher, while the Self-Rating Depression Scale and Self-Rating Anxiety Scale scores were significantly lower (p < 0.05). CONCLUSIONS: This project demonstrates that evidence-based practice can improve the clinical practice of rehabilitation exercises for KTRs. The GRiP strategies proved to be extremely useful, notably, the formulation of a standardized rehabilitation exercise protocol, training, and enhancement of the exercising environment. Head nurses' leadership and decision-making also played an important role in the success of this project. SPANISH ABSTRACT: http://links.lww.com/IJEBH/A180.

13.
J Cell Mol Med ; 28(8): e18284, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597415

RESUMEN

Lung adenocarcinoma (LUAD) is a prevalent subtype of lung cancer, yet the contribution of purine metabolism (PM) to its pathogenesis remains poorly elucidated. PM, a critical component of intracellular nucleotide synthesis and energy metabolism, is hypothesized to exert a significant influence on LUAD development. Herein, we employed single-cell analysis to investigate the role of PM within the tumour microenvironment (TME) of LUAD. PM scoring (PMS) across distinct cell types was determined using AUCell, UCell, singscore and AddModuleScore algorithms. Subsequently, we explored communication networks among cells within high- and low-PMS groups, establishing a robust PM-associated signature (PAS) utilizing a comprehensive dataset comprising LUAD samples from TCGA and five GEO datasets. Our findings revealed that the high-PMS group exhibited intensified cell interactions, while the PAS, constructed using PM-related genes, demonstrated precise prognostic predictive capability. Notably, analysis across the TCGA dataset and five GEO datasets indicated that low-PAS patients exhibited a superior prognosis. Furthermore, the low-PAS group displayed increased immune cell infiltration and elevated CD8A expression, coupled with reduced PD-L1 expression. Moreover, data from eight publicly available immunotherapy cohorts suggested enhanced immunotherapy outcomes in the low-PAS group. These results underscore a close association between PAS and tumour immunity, offering predictive insights into genomic alterations, chemotherapy drug sensitivity and immunotherapy responses in LUAD. The newly established PAS holds promise as a valuable tool for selecting LUAD populations likely to benefit from future clinical stratification efforts.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Análisis de la Célula Individual , Inmunoterapia , Purinas , Microambiente Tumoral/genética
14.
Discov Oncol ; 15(1): 118, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613736

RESUMEN

INTRODUCTION: Surgery for gliomas involving eloquent areas is a very challenging microsurgical procedure. Maximizing both the extent of resection (EOR) and preservation of neurological function have always been the focus of attention. Intraoperative neurophysiological monitoring (IONM) is widely used in this kind of surgery. The purpose of this study was to evaluate the efficacy of IONM in eloquent area glioma surgery. METHODS: Sixty-eight glioma patients who underwent surgical treatment from 2014 to 2019 were included in this retrospective cohort study, which focused on eloquent areas. Clinical indicators and IONM data were analysed preoperatively, two weeks after surgery, and at the final follow-up. Logistic regression, Cox regression, and Kaplan‒Meier analyses were performed, and nomograms were then established for predicting prognosis. The diagnostic value of the IONM indicator was evaluated by the receiver operating characteristic (ROC) curve. RESULTS: IONM had no effect on the postoperative outcomes, including EOR, intraoperative bleeding volume, duration of surgery, length of hospital stay, and neurological function status. However, at the three-month follow-up, the percentage of patients who had deteriorated function in the monitored group was significantly lower than that in the unmonitored group (23.3% vs. 52.6%; P < 0.05). Logistic regression analysis showed that IONM was a significant factor in long-term neurological function (OR = 0.23, 95% CI (0.07-0.70). In the survival analysis, long-term neurological deterioration indicated worsened overall survival (OS) and progression-free survival (PFS). A prognostic nomogram was established through Cox regression model analysis, which could predict the probability 3-year survival rate. The concordance index was 0.761 (95% CI 0.734-0.788). The sensitivity and specificity of IONM evoked potential (SSEP and TCeMEP) were 0.875 and 0.909, respectively. In the ROC curve analysis, the area under the curve (AUC) for the SSEP and TCeMEP curves was 0.892 (P < 0.05). CONCLUSIONS: The application of IONM could improve long-term neurological function, which is closely related to prognosis and can be used as an independent prognostic factor. IONM is practical and widely available for predicting postoperative functional deficits in patients with eloquent area glioma.

15.
Funct Integr Genomics ; 24(2): 72, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594466

RESUMEN

BACKGROUND: Colorectal cancer is a malignant tumor of the digestive system originating from abnormal cell proliferation in the colon or rectum, often leading to gastrointestinal symptoms and severe health issues. Nucleotide metabolism, which encompasses the synthesis of DNA and RNA, is a pivotal cellular biochemical process that significantly impacts both the progression and therapeutic strategies of colorectal cancer METHODS: For single-cell RNA sequencing (scRNA-seq), five functions were employed to calculate scores related to nucleotide metabolism. Cell developmental trajectory analysis and intercellular interaction analysis were utilized to explore the metabolic characteristics and communication patterns of different epithelial cells. These findings were further validated using spatial transcriptome RNA sequencing (stRNA-seq). A risk model was constructed using expression profile data from TCGA and GEO cohorts to optimize clinical decision-making. Key nucleotide metabolism-related genes (NMRGs) were functionally validated by further in vitro experiments. RESULTS: In both scRNA-seq and stRNA-seq, colorectal cancer (CRC) exhibited unique cellular heterogeneity, with myeloid cells and epithelial cells in tumor samples displaying higher nucleotide metabolism scores. Analysis of intercellular communication revealed enhanced signaling pathways and ligand-receptor interactions between epithelial cells with high nucleotide metabolism and fibroblasts. Spatial transcriptome sequencing confirmed elevated nucleotide metabolism states in the core region of tumor tissue. After identifying differentially expressed NMRGs in epithelial cells, a risk prognostic model based on four genes effectively predicted overall survival and immunotherapy outcomes in patients. High-risk group patients exhibited an immunosuppressive microenvironment and relatively poorer prognosis and responses to chemotherapy and immunotherapy. Finally, based on data analysis and a series of cellular functional experiments, ACOX1 and CPT2 were identified as novel therapeutic targets for CRC. CONCLUSION: In this study, a comprehensive analysis of NMRGs in CRC was conducted using a combination of single-cell sequencing, spatial transcriptome sequencing, and high-throughput data. The prognostic model constructed with NMRGs shows potential as a standalone prognostic marker for colorectal cancer patients and may significantly influence the development of personalized treatment approaches for CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , RNA-Seq , Nucleótidos , Análisis de Expresión Génica de una Sola Célula , Transcriptoma , Redes y Vías Metabólicas , Neoplasias Colorrectales/genética , Microambiente Tumoral/genética
17.
Med Phys ; 51(6): 4271-4282, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38507259

RESUMEN

BACKGROUND: In radiotherapy, real-time tumor tracking can verify tumor position during beam delivery, guide the radiation beam to target the tumor, and reduce the chance of a geometric miss. Markerless kV x-ray image-based tumor tracking is challenging due to the low tumor visibility caused by tumor-obscuring structures. Developing a new method to enhance tumor visibility for real-time tumor tracking is essential. PURPOSE: To introduce a novel method for markerless kV image-based tracking of lung tumors via deep learning-based target decomposition. METHODS: We utilized a conditional Generative Adversarial Network (cGAN), known as Pix2Pix, to build a patient-specific model and generate the synthetic decomposed target image (sDTI) to enhance tumor visibility on the real-time kV projection images acquired by the onboard kV imager equipped on modern linear accelerators. We used 4DCT simulation images to generate the digitally reconstructed radiograph (DRR) and DTI image pairs for model training. We augmented the training dataset by randomly shifting the 4DCT in the superior-inferior, anterior-posterior, and left-right directions during the DRR and DTI generation process. We performed real-time 2D tumor tracking via template matching between the DTI generated from the CT simulation and the sDTI generated from the real-time kV projection images. We validated the proposed method using nine patients' datasets with implanted beacons near the tumor. RESULTS: The sDTI can effectively improve the image contrast around the lung tumors on the kV projection images for the nine patients. With the beacon motion as ground truth, the tracking errors were on average 0.8 ± 0.7 mm in the superior-inferior (SI) direction and 0.9 ± 0.8 mm in the in-plane left-right (IPLR) direction. The percentage of successful tracking, defined as a tracking error less than 2 mm in the SI direction, is 92.2% on the 4312 tested images. The patient-specific model took approximately 12 h to train. During testing, it took approximately 35 ms to generate one sDTI, and 13 ms to perform the tumor tracking using template matching. CONCLUSIONS: Our method offers the potential solution for nearly real-time markerless lung tumor tracking. It achieved a high level of accuracy and an impressive tracking rate. Further development of 3D lung tumor tracking is warranted.


Asunto(s)
Aprendizaje Profundo , Tomografía Computarizada Cuatridimensional , Procesamiento de Imagen Asistido por Computador , Neoplasias Pulmonares , Radioterapia Guiada por Imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada Cuatridimensional/métodos
18.
Environ Toxicol ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488684

RESUMEN

BACKGROUND: The hypothesized link between low-density lipoprotein (LDL) and oncogenesis has garnered significant interest, yet its explicit impact on lung adenocarcinoma (LUAD) remains to be elucidated. This investigation aims to demystify the function of LDL-related genes (LRGs) within LUAD, endeavoring to shed light on the complex interplay between LDL and carcinogenesis. METHODS: Leveraging single-cell transcriptomics, we examined the role of LRGs within the tumor microenvironment (TME). The expression patterns of LRGs across diverse cellular phenotypes were delineated using an array of computational methodologies, including AUCell, UCell, singscore, ssGSEA, and AddModuleScore. CellChat facilitated the exploration of distinct cellular interactions within LDL_low and LDL_high groups. The findmarker utility, coupled with Pearson correlation analysis, facilitated the identification of pivotal genes correlated with LDL indices. An integrative approach to transcriptomic data analysis was adopted, utilizing a machine learning framework to devise an LDL-associated signature (LAS). This enabled the delineation of genomic disparities, pathway enrichments, immune cell dynamics, and pharmacological sensitivities between LAS stratifications. RESULTS: Enhanced cellular crosstalk was observed in the LDL_high group, with the CoxBoost+Ridge algorithm achieving the apex c-index for LAS formulation. Benchmarking against 144 extant LUAD models underscored the superior prognostic acuity of LAS. Elevated LAS indices were synonymous with adverse outcomes, diminished immune surveillance, and an upsurge in pathways conducive to neoplastic proliferation. Notably, a pronounced susceptibility to paclitaxel and gemcitabine was discerned within the high-LAS cohort, delineating prospective therapeutic corridors. CONCLUSION: This study elucidates the significance of LRGs within the TME and introduces an LAS for prognostication in LUAD patients. Our findings accentuate putative therapeutic targets and elucidate the clinical ramifications of LAS deployment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...