Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Phys Chem Lett ; : 5607-5611, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758196

RESUMEN

Dissociative electron attachment (DEA) is widely believed to play a high-profile role in ionizing radiation damages of bioorganic molecules, and its fundamentals are mainly learned from the gas-phase studies. However, the DEA process in aqueous solution is still in debate. Here we provide experimental evidence about the DEA processes of liquid methanol by using electron-impact-time-delayed mass spectrometry. In contrast to the gas- and solid-phase DEAs, methoxide ion CH3O- is the predominant product from the liquid interface. Furthermore, this anion can be produced with both the primary low-energy electrons and the inelastically scattered and secondary low-energy electrons. On the contrary, the primary low-energy electrons in the liquid bulk are more likely to be solvated, rather than directly participating in the DEA process. Our study provides new insights into radiation chemistry, particularly of bioorganic relevance.

2.
Microb Pathog ; : 106703, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763315

RESUMEN

Streptococcus equi ssp. zooepidemicus (SEZ) is a crucial pathogen and contributes to various infections in numerous animal species. Swine streptococcicosis outbreak caused by SEZ has been reported in several countries in recent years. SzM protein is a cell membrane-anchored protein, which exhibits as an important virulence factor of SEZ. Effects of SzM protein on host innate immune need further study. Here, recombinant SzM (rSzM) protein of the SEZ was obtained, and mice were intraperitoneally injected with rSzM protein. We discovered that rSzM protein can recruit neutrophils into the injected site. In further study, neutrophils were isolated and treated with rSzM protein, NETs release were triggered by rSzM protein independently, and GSDMD protein was promoted-expressed and activated. In order to investigate the role of GSDMD in NETs formation, neutrophils isolated from WT mice and GSDMD-/- mice were treated with rSzM protein. The results showed that GSDMD deficiency suppressed the NETs release. In conclusion, SzM protein of SEZ can trigger the NETs release in a GSDMD-depending manner.

3.
Materials (Basel) ; 17(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38673231

RESUMEN

The preparation of electrocatalysts with high performance for the ethanol oxidation reaction is vital for the large-scale commercialization of direct ethanol fuel cells. Here, we successfully synthesized a high-performance electrocatalyst of a AuPd alloy with a decreased alloying degree via pulsed laser irradiation in liquids. As indicated by the experimental results, the photochemical effect-induced surficial deposition of Pd atoms, combined with the photothermal effect-induced interdiffusion of Au and Pd atoms, resulted in the formation of AuPd alloys with a decreased alloying degree. Structural characterization reveals that L-AuPd exhibits a lower degree of alloying compared to C-AuPd prepared via the conventional co-reduction method. This distinct structure endows L-AuPd with outstanding catalytic activity and stability in EOR, achieving mass and specific activities as high as 16.01 A mgPd-1 and 20.69 mA cm-2, 9.1 and 5.2 times than that of the commercial Pd/C respectively. Furthermore, L-AuPd retains 90.1% of its initial mass activity after 300 cycles. This work offers guidance for laser-assisted fabrication of efficient Pd-based catalysts in EOR.

4.
Phys Rev Lett ; 132(8): 083201, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38457733

RESUMEN

We introduce time-resolved multielectron coincidence spectroscopy and apply it to the double Auger-Meitner (AM) emission process following xenon 4d photoionization. The photoelectron and AM electron(s) are measured in coincidence by using a magnetic-bottle time-of-flight spectrometer, enabling an unambiguous assignment of the complete cascade pathways involving two AM electron emissions. In the presence of a near-infrared (NIR) laser pulse, the intermediate Xe^{2+*} state embedded in the Xe^{3+} continuum is probed through single NIR photon absorption and the lifetime of this intermediate Xe^{2+*} state is directly obtained as (109±22) fs.

5.
Breast Cancer Res ; 26(1): 37, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454442

RESUMEN

Increasing evidence shows the oncogenic function of FAM83D in human cancer, but how FAM83D exerts its oncogenic function remains largely unclear. Here, we investigated the importance of FAM83D/FBXW7 interaction in breast cancer (BC). We systematically mapped the FBXW7-binding sites on FAM83D through a comprehensive mutational analysis together with co-immunoprecipitation assay. Mutations at the FBXW7-binding sites on FAM83D led to that FAM83D lost its capability to promote the ubiquitination and proteasomal degradation of FBXW7; cell proliferation, migration, and invasion in vitro; and tumor growth and metastasis in vivo, indicating that the FBXW7-binding sites on FAM83D are essential for its oncogenic functions. A meta-evaluation of FAM83D revealed that the prognostic impact of FAM83D was independent on molecular subtypes. The higher expression of FAM83D has poorer prognosis. Moreover, high expression of FAM83D confers resistance to chemotherapy in BCs, which is experimentally validated in vitro. We conclude that identification of FBXW7-binding sites on FAM83D not only reveals the importance for FAM83D oncogenic function, but also provides valuable insights for drug target.


Asunto(s)
Neoplasias de la Mama , Proteínas de Ciclo Celular , Humanos , Femenino , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Pronóstico , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo
6.
Sci Adv ; 10(13): eadl3810, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536928

RESUMEN

We experimentally and theoretically demonstrate that electron correlation can cause the bond-length sensitivity of a shape resonance to induce an unexpected vibrational state-dependent ionization delay in a nonresonant channel. This discovery was enabled by a high-resolution attosecond-interferometry experiment based on a 400-nm driving and dressing wavelength. The short-wavelength driver results in a 6.2-electron volt separation between harmonics, markedly reducing the spectral overlap in the measured interferogram. We demonstrate the promise of this method on O2, a system characterized by broad vibrational progressions and a dense photoelectron spectrum. We measure a 40-attosecond variation of the photoionization delays over the X2Πg vibrational progression. Multichannel calculations show that this variation originates from a strong bond-length dependence of the energetic position of a shape resonance in the [Formula: see text] channel, which translates to the observed effects through electron correlation. The unprecedented energy resolution and delay accuracies demonstrate the promise of visible-light-driven molecular attosecond interferometry.

7.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400411

RESUMEN

In the process of silicon single-crystal preparation, the timely identification and adjustment of abnormal conditions are crucial. Failure to promptly detect and resolve issues may result in a substandard silicon crystal product quality or even crystal pulling failure. Therefore, the early identification of abnormal furnace conditions is essential for ensuring the preparation of perfect silicon single crystals. Additionally, since the thermal field is the fundamental driving force for stable crystal growth and the primary assurance of crystal quality, this paper proposes a silicon single-crystal growth temperature gradient trend classification algorithm based on multi-level feature fusion. The aim is to accurately identify temperature gradient changes during silicon crystal growth, in order to promptly react to early growth failures and ensure the stable growth of high-quality silicon single crystals to meet industrial production requirements. The algorithm first divides the temperature gradient trend into reasonable categories based on expert knowledge and qualitative analysis methods. Then, it fuses the original features of actual production data, shallow features extracted based on statistical information, and deep features extracted through deep learning. During the fusion process, the algorithm considers the impact of different features on the target variable and calculates mutual information based on the difference between information entropy and conditional entropy, ultimately using mutual information for feature weighting. Subsequently, the fused multi-level feature vectors and their corresponding trend labels are input into a Deep Belief Network (DBN) model to capture process dynamics and classify trend changes. Finally, the experimental results demonstrate that the proposed algorithm can effectively predict the changing trend of thermal field temperature gradients. The introduction of this algorithm will help improve the accuracy of fault trend prediction in silicon single-crystal preparation, thereby minimizing product quality issues and production interruptions caused by abnormal conditions.

8.
Proc Natl Acad Sci U S A ; 121(8): e2314128121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38359291

RESUMEN

Aberrant lysine lactylation (Kla) is associated with various diseases which are caused by excessive glycolysis metabolism. However, the regulatory molecules and downstream protein targets of Kla remain largely unclear. Here, we observed a global Kla abundance profile in colorectal cancer (CRC) that negatively correlates with prognosis. Among lactylated proteins detected in CRC, lactylation of eEF1A2K408 resulted in boosted translation elongation and enhanced protein synthesis which contributed to tumorigenesis. By screening eEF1A2 interacting proteins, we identified that KAT8, a lysine acetyltransferase that acted as a pan-Kla writer, was responsible for installing Kla on many protein substrates involving in diverse biological processes. Deletion of KAT8 inhibited CRC tumor growth, especially in a high-lactic tumor microenvironment. Therefore, the KAT8-eEF1A2 Kla axis is utilized to meet increased translational requirements for oncogenic adaptation. As a lactyltransferase, KAT8 may represent a potential therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Biosíntesis de Proteínas , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Catálisis , Microambiente Tumoral , Histona Acetiltransferasas
9.
Chin Med J (Engl) ; 137(2): 181-189, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37612257

RESUMEN

BACKGROUND: Liver cancer is largely resistant to chemotherapy. This study aimed to identify the effective chemotherapeutics for ß-catenin-activated liver cancer which is caused by gain-of-function mutation of catenin beta 1 ( CTNNB1 ), the most frequently altered proto-oncogene in hepatic neoplasms. METHODS: Constitutive ß-catenin-activated mouse embryonic fibroblasts (MEFs) were established by deleting exon 3 ( ß-catenin Δ(ex3)/+ ), the most common mutation site in CTNNB1 gene. A screening of 12 widely used chemotherapy drugs was conducted for the ones that selectively inhibited ß-catenin Δ(ex3)/+ but not for wild-type MEFs. Untargeted metabolomics was carried out to examine the alterations of metabolites in nucleotide synthesis. The efficacy and selectivity of methotrexate (MTX) on ß-catenin-activated human liver cancer cells were determined in vitro . Immuno-deficient nude mice subcutaneously inoculated with ß-catenin wild-type or mutant liver cancer cells and hepatitis B virus ( HBV ); ß-catenin lox(ex3)/+ mice were used, respectively, to evaluate the efficacy of MTX in the treatment of ß-catenin mutant liver cancer. RESULTS: MTX was identified and validated as a preferential agent against the proliferation and tumor formation of ß-catenin-activated cells. Boosted nucleotide synthesis was the major metabolic aberration in ß-catenin-active cells, and this alteration was also the target of MTX. Moreover, MTX abrogated hepatocarcinogenesis of HBV ; ß-catenin lox(ex3)/+ mice, which stimulated concurrent Ctnnb1- activated mutation and HBV infection in liver cancer. CONCLUSION: MTX is a promising chemotherapeutic agent for ß-catenin hyperactive liver cancer. Since repurposing MTX has the advantages of lower risk, shorter timelines, and less investment in drug discovery and development, a clinical trial is warranted to test its efficacy in the treatment of ß-catenin mutant liver cancer.


Asunto(s)
Neoplasias Hepáticas , Metotrexato , Ratones , Animales , Humanos , Metotrexato/farmacología , Metotrexato/uso terapéutico , Ratones Desnudos , beta Catenina/genética , beta Catenina/metabolismo , Fibroblastos/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Virus de la Hepatitis B , Nucleótidos
10.
Environ Pollut ; 341: 122948, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977363

RESUMEN

Phthalic acid esters (PAEs) are environmental endocrine disruptors thought to interfere with glucose metabolism in humans. Most of the related research has focused on population epidemiological studies, with the underlying mechanisms remaining unresolved. Using an in vivo animal model, we examined the effects of oral administration of two commonly used PAEs [di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP)] on glucose homeostasis and insulin secretion. DEHP (750 mg/kg, 1/40 LD50), DBP (500 mg/kg, 1/40 LD50), and DEHP (750 mg/kg) + DBP (500 mg/kg) exert an influence on glucose metabolism and elicit a reduction in insulin sensitivity in rats. Furthermore, these substances induce detrimental effects on the structure and functionality of pancreatic ß-cells. DEHP and/or DBP triggered an increase in plasma malondialdehyde (MDA) and reduction in superoxide dismutase (SOD) activity; a reduction in the phosphorylation of phosphatidyl inositol 3 kinase (PI3K) and phospho-protein kinase B (p-Akt473) proteins; an increase in the relative expression of Bax, Caspase-8, cleaved-Caspase-9, and cleaved-Caspase-3; and a reduction in the relative expression of Bcl-2-related Bax in pancreatic tissue and of gastrocnemius glucose transporter 4 (GLUT4) in the gastrocnemius muscle. Based on these findings, these PAEs can disrupt glucose metabolism, possibly via oxidative damage of the PI3K/Akt/GLUT4 pathway; this damage induces pancreatic ß-cell apoptosis, affects pancreatic ß-cell function, and affects glucose metabolism and insulin resistance in rats. To the best of our knowledge, this study was the first to show that the combined effect of the two PAEs affects glucose metabolism and insulin resistance in rats that is significantly higher than the effects of each PAE. Thus, safety standards and studies do not consider this effect as a significant oversight when blending PAEs. We assert that this must be addressed and corrected for establishing more impactful and safer standards.


Asunto(s)
Dietilhexil Ftalato , Resistencia a la Insulina , Ácidos Ftálicos , Humanos , Ratas , Animales , Dibutil Ftalato , Dietilhexil Ftalato/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Ácidos Ftálicos/toxicidad , Estrés Oxidativo , Glucosa/metabolismo , Ésteres
11.
Nat Chem Biol ; 20(4): 484-492, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37945893

RESUMEN

GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within the 7TM bundle, a hydrophobic chain packing-mediated activation mechanism and the structural basis of disease-related mutants. Importantly, a side pocket is identified in GPR101 that facilitates in silico screening to identify four small-molecule agonists, including AA-14. The structure of AA-14-GPR101-Gs provides direct evidence of the AA-14 binding at the side pocket. Functionally, AA-14 partially restores the functions of GH/IGF-1 axis and exhibits several rejuvenating effects in wild-type mice, which are abrogated in Gpr101-deficient mice. In summary, we provide a structural basis for the constitutive activity of GPR101. The structure-facilitated identification of GPR101 agonists and functional analysis suggest that targeting this orphan receptor has rejuvenating potential.


Asunto(s)
Receptores Acoplados a Proteínas G , Ratones , Animales , Microscopía por Crioelectrón , Receptores Acoplados a Proteínas G/metabolismo , Ligandos
12.
Am J Cancer Res ; 13(11): 5306-5319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058804

RESUMEN

Ferroptosis and cuproptosis are both novel types of cell death. Long noncoding RNAs (lncRNAs) are associated with multiple cancers. Notably, bioinformatics study of ferroptosis- and cuproptosis-related lncRNAs (FCLs) in lung adenocarcinoma (LUAD) has not been elucidated. In this study, we used univariate Cox, multivariate Cox, and least absolute shrinkage and selection operator Cox (LASSO-Cox) analyses to screen three FCLs, namely AC079193.2, AC090559.1, and AL512363.1. We then showed that these three FCLs were tumor-specific and correlated with ferroptosis and cuproptosis using qRT-PCR. Next, a prognostic risk model consisting of high- and low-risk cohorts was successfully constructed based on The Cancer Genome Atlas-LUAD data. The high-risk group consistently demonstrated poor prognosis. The accuracy of the model was evaluated using AUC, C-index curves, and nomograms. Furthermore, KEGG and GO analysis with R software showed significant enrichment in immune functions and metabolic pathways. Hereto, the immune function and immune cell expression results were more pronounced in the low-risk versus high-risk group. In conclusion, the prognostic risk model comprised of three FCLs effectively predicted patient outcomes and is associated with the immune microenvironment in LUAD.

13.
Vaccines (Basel) ; 11(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37631859

RESUMEN

Infectious bronchitis (IB) is a major threat to the global poultry industry. Despite the availability of commercial vaccines, the IB epidemic has not been effectively controlled. The exploration of novel IBV vaccines may provide a new way to prevent and control IB. In this study, BLP-S1, a bacterium-like particle displaying the S1 subunit of infectious bronchitis virus (IBV), was constructed using the GEM-PA surface display system. The immunoprotective efficacy results showed that BLP-S1 can effectively induce specific IgG and sIgA immune responses, providing a protection rate of 90% against IBV infection in 14-day-old commercial chickens. These results suggest that BLP-S1 has potential for the development of novel vaccines with good immunogenicity and immunoprotection.

14.
J Colloid Interface Sci ; 652(Pt A): 132-141, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591075

RESUMEN

Solid-state sodium-ion batteries have attracted significant attention due to their rich resources, high safety, and high energy density. However, the lower ionic conductivity and inferior interfacial contact between solid-state electrolytes (SSEs) and electrodes limit their practical applications. Herein, polyvinylideneuoride-co-hexauoropropylene (PVDF-HFP) membrane is selected and a novel sandwiched composite PVDF-HFP/Na2.5Zr1.95Ce0.05Si2.2P0.8O11.3F0.7/PVDF-HFP (G-NZC0.05SPF0.7-G) SSEs is well designed. The ionic conductivity of Na3Zr2Si2PO12 is enhanced by Ce4+/F- co-doping. The effects of Ce4+ and F- doping on the crystal structure, density, and ionic conductivity for Na3Zr2Si2PO12 are well investigated. The optimal NZC0.05SPF0.7 delivers a high ionic conductivity of 1.39 × 10-3 S cm-1 at 25 â„ƒ. Moreover, the PVDF-HFP membrane can significantly enhance the interface compatibility between NZC0.05SPF0.7 and electrodes. The as-prepared G-NZC0.05SPF0.7-G exhibits a large ionic conductivity of 1.07 × 10-3 S cm-1 at 25 â„ƒ, wide electrochemical stability window up to 4.5 V, high critical current density of 1.2 A cm-2, and stable Na plating/stripping over 600 h at 0.3 A cm-2. The solid-state Na0.67Mn0.47Ni0.33Ti0.2O2/G-NZC0.05SPF0.7-G/Na battery delivers a remarkable cycling stability and rate capability at 25 â„ƒ, indicating that the as-prepared G-NZC0.05SPF0.7-G has a promising application for solid-state SIBs. This study demonstrates an effective strategy to develop advanced solid-state electrolytes for solid-state SIBs.

15.
J Cancer Res Clin Oncol ; 149(13): 11351-11368, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37378675

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) seriously threatens people's health worldwide. Programmed cell death (PCD) plays a critical role in regulating LUAD growth and metastasis as well as in therapeutic response. However, currently, there is a lack of integrative analysis of PCD-related signatures of LUAD for accurate prediction of prognosis and therapeutic response. METHODS: The bulk transcriptome and clinical information of LUAD were obtained from TCGA and GEO databases. A total of 1382 genes involved in regulating 13 various PCD patterns (apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, netotic cell death, entotic cell death, lysosome-dependent cell death, parthanatos, autophagy-dependent cell death, oxeiptosis, alkaliptosis and disulfidptosis) were included in the study. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were performed to identify PCD-associated differential expression genes (DEGs). An unsupervised consensus clustering algorithm was used to explore the potential subtypes of LUAD based on the expression profiles of PCD-associated DEGs. Univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression, Random Forest (RF) analysis and stepwise multivariate Cox analysis were performed to construct a prognostic gene signature. The "oncoPredict" algorithm was utilized for drug-sensitive analysis. GSVA and GSEA were utilized to perform function enrichment analysis. MCPcounter, quanTIseq, Xcell and ssGSEA algorithms were used for tumor immune microenvironment analysis. A nomogram incorporating PCDI and clinicopathological characteristics was established to predict the prognosis of LUAD patients. RESULTS: Forty PCD-associated DEGs related to LUAD were obtained by WGCNA analysis and differential expression analysis, followed by unsupervised clustering to identify two LUAD molecular subtypes. A programmed cell death index (PCDI) with a five-gene signature was established by machine learning algorithms. LUAD patients were then divided into a high PCDI group and a low PCDI group using the median PCDI as a cutoff. Survival and therapeutic analysis revealed that the high PCDI group had a poor prognosis and was more sensitive to targeted drugs but less sensitive to immunotherapy compared to the low PCDI group. Further enrichment analysis showed that B cell-related pathways were significantly downregulated in the high PCDI group. Accordingly, the decreased tumor immune cell infiltration and the lower tumor tertiary lymphoid structure (TLS) scores were also found in the high PCDI group. Finally, a nomogram with reliable predictive performance PCDI was constructed by incorporating PCDI and clinicopathological characteristics, and a user-friendly online website was established for clinical reference ( https://nomogramiv.shinyapps.io/NomogramPCDI/ ). CONCLUSION: We performed the first comprehensive analysis of the clinical relevance of genes regulating 13 PCD patterns in LUAD and identified two LUAD molecular subtypes with distinct PCD-related gene signature which indicated differential prognosis and treatment sensitivity. Our study provided a new index to predict the efficacy of therapeutic interventions and the prognosis of LUAD patients for guiding personalized treatments.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Apoptosis , Pronóstico , Adenocarcinoma del Pulmón/genética , Muerte Celular , Neoplasias Pulmonares/genética , Microambiente Tumoral
16.
Phys Rev Lett ; 130(15): 153201, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37115860

RESUMEN

We report a combined experimental and theoretical study on the effect of autoionizing resonances in time-resolved photoelectron spectroscopy. The coherent excitation of N_{2} by ∼14.15 eV extreme-ultraviolet photons prepares a superposition of three dominant adjacent vibrational levels (v^{'}=14-16) in the valence b^{'} ^{1}Σ_{u}^{+} state, which are probed by the absorption of two or three near-infrared photons (800 nm). The superposition manifests itself as coherent oscillations in the measured photoelectron spectra. A quantum-mechanical simulation confirms that two autoionizing Rydberg states converging to the excited A ^{2}Π_{u} and B ^{2}Σ_{u}^{+} N_{2}^{+} cores are accessed by the resonant absorption of near-infrared photons. We show that these resonances apply different filters to the observation of the vibrational wave packet, which results in different phases and amplitudes of the oscillating photoelectron signal depending on the nature of the autoionizing resonance. This work clarifies the importance of resonances in time-resolved photoelectron spectroscopy and particularly reveals the phase of vibrational quantum beats as a powerful observable for characterizing the properties of such resonances.

17.
Oncogenesis ; 12(1): 12, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864055

RESUMEN

Ubiquitin-specific-processing proteases 35 (USP35) is an under-characterized deubiquitinase and its role in colorectal cancer (CRC) remains unclear. Here, we focus on delineating the impact of USP35 on CRC cell proliferation and chemo-resistance, as well as the possible regulatory mechanism. By examining the genomic database and clinical samples, we found that USP35 was overexpressed in CRC. Further functional studies showed that enhanced USP35 expression promoted CRC cell proliferation and resistance to oxaliplatin (OXA) and 5-fluorouracil (5-FU), whereas USP35 depletion impeded cell proliferation and sensitized cells to OXA and 5-FU treatments. Then, to explore the possible mechanism underlying USP35-triggered cellular responses, we performed co-immunoprecipitation (co-IP) followed by mass spectrometry (MS) analysis and identified α-L-fucosidase 1 (FUCA1) as a direct deubiquitiation target of USP35. Importantly, we demonstrated that FUCA1 was an essential mediator for USP35-induced cell proliferation and chemo-resistance in vitro and in vivo. Finally, we observed that nucleotide excision repair (NER) components (e.g., XPC, XPA, ERCC1) were up-regulated by USP35-FUCA1 axis, indicating a potential mechanism for USP35-FUCA1-mediated platinum resistance in CRC. Together, our results for the first time explored the role and important mechanism of USP35 in CRC cell proliferation and chemotherapeutic response, providing a rationale for USP35-FUCA1-targeted therapy in CRC.

18.
Front Immunol ; 14: 1117658, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817484

RESUMEN

Background: Esophageal squamous cell carcinoma (ESCC) is one of the most common and lethal malignant diseases. Immunotherapy has been widely studied and has exhibited potential in ESCC treatment. However, there are only a portion of ESCC patients have benefited from immunotherapy. We herein identified immunotherapeutic response-related signatures (IRRS) and evaluated their performance in ESCC prognosis and immunotherapeutic responsiveness. Methods: We constructed an IRRS using the gene expression data of 274 ESCC patients based on y -30significantly differentially expressed genes, which were compared responders and non-responders from various patient cohorts treated with immunotherapy. Survival analysis was performed in both the GSE53625 and TCGA-ESCC cohorts. We also explored the differences in the tumor microenvironment between the high-IRRS and low-IRRS score groups using single-cell data as a reference. Three immunotherapy cohorts were used to verify the value of the IRRS in predicting immunotherapy response. Results: Twelve immunotherapy-related genes were selected to construct a signature score and were validated as independent prognostic predictors for patients with ESCC. Patients with high IRRS scores exhibited an immunosuppressive phenotype. Therefore, patients with low IRRS scores may benefit from immunotherapy. Conclusions: IRRS score is a biomarker for immunotherapy response and prognosis of ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Biomarcadores de Tumor/genética , Pronóstico , Inmunoterapia , Microambiente Tumoral
19.
Exp Ther Med ; 25(1): 32, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36569437

RESUMEN

It has been reported that long non-coding RNA nuclear-enriched abundant transcript 1 (NEAT1) is involved in follicular growth and multiple ovarian diseases, but not the physiological function of NEAT1 in mouse granulosa cells (mGCs). Therefore, the aim of the present study was to investigate the biological roles and regulatory mechanisms of NEAT1 in mGCs. The biological effects of NEAT1 on mGCs proliferation, apoptosis, production of 17ß-Estradiol (E2) and progesterone (P4) were investigated using MTS, flow cytometry and enzyme-linked immunosorbent assays, respectively. The association between NEAT1 and microRNA (miR)-874-3p was verified using luciferase reporter assay and RNA immunoprecipitation analysis. The results demonstrated that the knockdown of NEAT1 in mGC cells significantly promoted mGCs cell proliferation, inhibited apoptosis and increased the production of E2 and P4 in mGCs. The interference-mediated effect of NEAT1 on mGCs could be partially reversed by the downregulation of miR-874-3p. Overall, these results indicated that NEAT1 served as a competing endogenous RNA by competitively binding with miR-874-3p, thereby modulating mGCs proliferation and the production of E2 and P4 in mGCs.

20.
Anim Biotechnol ; : 1-8, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542538

RESUMEN

Dermal papilla cells (DPCs) are the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Successfully isolated and cultured DPCs from Small-tail Han sheep could provide a good model for the study of hair follicle development mechanism in vitro. DPCs were isolated using enzyme digestion and dissecting microscope from Small-tail Han sheep. Adherent cells were identified by cell characteristics, particular gene expression, differentiation capability to adipocyte and osteoblast using specific differentiation mediums. Additionally, flow cytometry was used to detect the cell cycle of DPCs. Cells originating from the dermal papilla showed the morphological appearance of mesenchymal cells (fibroblast-like cells). Purified DPCs were positive for α-SMA (α smooth muscle actin) and vimentin; in addition to their strong proliferation abilities in vitro, these DPCs can be differentiated into adipocyte and osteoblasts lineage under appropriate culture condition. DPCs were successfully isolated and subcultured from Small-tail Han sheep, which exhibited progenitor cell features and multiple differentiation potency. It provides a material for studying the molecular mechanism of hair follicle development and hair cycle, which will promote wool production in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...