Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996616

RESUMEN

The immunogenicity of transplanted allogeneic cells and tissues is a major hurdle to the advancement of cell therapies. Here we show that the overexpression of eight immunomodulatory transgenes (Pdl1, Cd200, Cd47, H2-M3, Fasl, Serpinb9, Ccl21 and Mfge8) in mouse embryonic stem cells (mESCs) is sufficient to immunologically 'cloak' the cells as well as tissues derived from them, allowing their survival for months in outbred and allogeneic inbred recipients. Overexpression of the human orthologues of these genes in human ESCs abolished the activation of allogeneic human peripheral blood mononuclear cells and their inflammatory responses. Moreover, by using the previously reported FailSafe transgene system, which transcriptionally links a gene essential for cell division with an inducible and cell-proliferation-dependent kill switch, we generated cloaked tissues from mESCs that served as immune-privileged subcutaneous sites that protected uncloaked allogeneic and xenogeneic cells from rejection in immune-competent hosts. The combination of cloaking and FailSafe technologies may allow for the generation of safe and allogeneically accepted cell lines and off-the-shelf cell products.

2.
Nature ; 563(7733): 701-704, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429614

RESUMEN

Human pluripotent cell lines hold enormous promise for the development of cell-based therapies. Safety, however, is a crucial prerequisite condition for clinical applications. Numerous groups have attempted to eliminate potentially harmful cells through the use of suicide genes1, but none has quantitatively defined the safety level of transplant therapies. Here, using genome-engineering strategies, we demonstrate the protection of a suicide system from inactivation in dividing cells. We created a transcriptional link between the suicide gene herpes simplex virus thymidine kinase (HSV-TK) and a cell-division gene (CDK1); this combination is designated the safe-cell system. Furthermore, we used a mathematical model to quantify the safety level of the cell therapy as a function of the number of cells that is needed for the therapy and the type of genome editing that is performed. Even with the highly conservative estimates described here, we anticipate that our solution will rapidly accelerate the entry of cell-based medicine into the clinic.


Asunto(s)
Proteína Quinasa CDC2/genética , División Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Genes Transgénicos Suicidas/genética , Seguridad del Paciente , Animales , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/normas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Ganciclovir/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simplexvirus/enzimología , Simplexvirus/genética , Timidina Quinasa/genética , Timidina Quinasa/metabolismo
3.
EMBO Mol Med ; 6(5): 604-23, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705878

RESUMEN

Current therapeutic antiangiogenic biologics used for the treatment of pathological ocular angiogenesis could have serious side effects due to their interference with normal blood vessel physiology. Here, we report the generation of novel antivascular endothelial growth factor-A (VEGF) biologics, termed VEGF "Sticky-traps," with unique properties that allow for local inhibition of angiogenesis without detectable systemic side effects. Using genetic and pharmacological approaches, we demonstrated that Sticky-traps could locally inhibit angiogenesis to at least the same extent as the original VEGF-trap that also gains whole-body access. Sticky-traps did not cause systemic effects, as shown by uncompromised wound healing and normal tracheal vessel density. Moreover, if injected intravitreally, recombinant Sticky-trap remained localized to various regions of the eye, such as the inner-limiting membrane and ciliary body, for prolonged time periods, without gaining access either to the photoreceptors/choriocapillaris area or the circulation. These unique pharmacological characteristics of Sticky-trap could allow for safe treatment of pathological angiogenesis in patients with diabetic retinopathy and retinopathy of pre-maturity.


Asunto(s)
Productos Biológicos/metabolismo , Ojo/efectos de los fármacos , Neovascularización Patológica/prevención & control , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Productos Biológicos/efectos adversos , Productos Biológicos/farmacocinética , Humanos , Receptores de Factores de Crecimiento Endotelial Vascular/efectos adversos , Receptores de Factores de Crecimiento Endotelial Vascular/farmacocinética , Proteínas Recombinantes de Fusión/efectos adversos , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Factor A de Crecimiento Endotelial Vascular/genética
4.
Mol Cancer ; 11: 89, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23231822

RESUMEN

BACKGROUND: Transgenes introduced into cancer cell lines serve as powerful tools for identification of genes involved in cancer. However, the random nature of genomic integration site of a transgene highly influences the fidelity, reliability and level of its expression. In order to alleviate this bottleneck, we characterized the potential utility of a novel PhiC31 integrase-mediated site-specific insertion system (PhiC31-IMSI) for introduction of transgenes into a pre-inserted docking site in the genome of cancer cells. METHODS: According to this system, a "docking-site" was first randomly inserted into human cancer cell lines and clones with a single copy were selected. Subsequently, an "incoming" vector containing the gene of interest was specifically inserted in the docking-site using PhiC31. RESULTS: Using the Pc-3 and SKOV-3 cancer cell lines, we showed that transgene insertion is reproducible and reliable. Furthermore, the selection system ensured that all surviving stable transgenic lines harbored the correct integration site. We demonstrated that the expression levels of reporter genes, such as green fluorescent protein and luciferase, from the same locus were comparable among sister, isogenic clones. Using in vivo xenograft studies, we showed that the genetically altered cancer cell lines retain the properties of the parental line. To achieve temporal control of transgene expression, we coupled our insertion strategy with the doxycycline inducible system and demonstrated tight regulation of the expression of the antiangiogenic molecule sFlt-1-Fc in Pc-3 cells. Furthermore, we introduced the luciferase gene into the insertion cassette allowing for possible live imaging of cancer cells in transplantation assays. We also generated a series of Gateway cloning-compatible intermediate cassettes ready for high-throughput cloning of transgenes and demonstrated that PhiC31-IMSI can be achieved in a high throughput 96-well plate format. CONCLUSIONS: The novel PhiC31-IMSI system described in this study represents a powerful tool that can facilitate the characterization of cancer-related genes.


Asunto(s)
Técnicas de Transferencia de Gen , Recombinación Homóloga , Neoplasias/genética , Transgenes , Animales , Línea Celular Tumoral , Doxiciclina/farmacología , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Orden Génico , Genes Reporteros , Vectores Genéticos , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Reproducibilidad de los Resultados , Trasplante Heterólogo
5.
Stem Cell Rev Rep ; 7(3): 693-702, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21347602

RESUMEN

The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the veterinary field, open up the opportunity to utilize horses for the validation of stem cell based therapies before moving into the human clinical setting. In this study, we report the generation of iPS cells from equine fibroblasts using a piggyBac (PB) transposon-based method to deliver transgenes containing the reprogramming factors Oct4, Sox2, Klf4 and c-Myc, expressed in a temporally regulated fashion. The established iPS cell lines express hallmark pluripotency markers, display a stable karyotype even during long-term culture, and readily form complex teratomas containing all three embryonic germ layer derived tissues upon in vivo grafting into immunocompromised mice. Our EiPS cell lines hold the promise to enable the development of a whole new range of stem cell-based regenerative therapies in veterinary medicine, as well as aid the development of preclinical models for human applications. EiPS cell could also potentially be used to revive recently extinct or currently threatened equine species.


Asunto(s)
Línea Celular , Fibroblastos/citología , Caballos , Células Madre Pluripotentes Inducidas/citología , Animales , Técnicas de Cultivo de Célula , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Cultivadas , Reprogramación Celular , Fibroblastos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Factor 4 Similar a Kruppel , Ratones , Regeneración , Transgenes
6.
Methods ; 53(4): 380-5, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21185379

RESUMEN

Homologous and site-specific DNA recombination has revolutionized genetic engineering. The reliability of recombinases such as Cre and FLP has allowed scientists to design complex strategies to study gene function in mammals. However, the retention of recombination sites in the genome limits the use of Cre and FLP recombinases in subsequent modifications. Access to additional recombinases in the ES cell toolbox would enormously widen the number of possibilities to manipulate the genome. In the method presented here, we combine the use of PhiC31, a site-specific integrase, with FLP to obtain site-specific insertion and replacement in pre-inserted docking sites in the genome of mouse ES cells. This method allows for the integration of any sequence of interest in a pre-defined locus, leaving Cre recombinase available for downstream applications. The selection strategy is based on a silent selection marker activated by a plasmid-delivered promoter, making the integration system highly reliable and reducing the need for extensive molecular screens. This article describes how to create "dockable" mouse embryonic stem (ES) cell lines, integrate incoming vectors, and analyze the resulting clones. Current applications of this technology are also discussed.


Asunto(s)
Ingeniería Genética/métodos , Integrasas/genética , Recombinasas/genética , Animales , Southern Blotting , Técnicas de Cultivo de Célula , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Componentes del Gen , Vectores Genéticos , Humanos , Ratones , Análisis de Secuencia de ADN , Transfección/métodos
7.
Genesis ; 40(4): 241-6, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15593332

RESUMEN

Spectral variants of green fluorescent protein are widely used in live samples for a broad range of applications: from visualization of protein interactions, through following gene expression, to marking particular cells in complex tissues. Higher wavelength emissions (such as red) are preferred due to the lower background-autofluorescence in tissues (Miyawaka et al., Nat Cell Biol Suppl S1-7, 2003). Until now, however, red fluorescent proteins (RFP) have displayed toxicity in murine embryos, which has hampered its application in this model. Here we report strong expression of a recently developed RFP variant, DsRed.T3, in mouse ES cells, embryos, and adult mice. Our results show that the red fluorescent wavelength has a superior tissue penetrance compared with spectral variants of lower wavelength. Furthermore, we have generated an ES cell line and a corresponding transgenic mouse line in which red fluorescence is activated upon Cre excision. Finally, we introduced cell type-specifically expressed Cre transgenes into this Cre recombinase reporter cell line, and by using the tetraploid embryo complementation assay, we could directly verify the Cre recombinase specificity on ES cell-derived embryos/animals.


Asunto(s)
Embrión de Mamíferos/metabolismo , Proteínas Luminiscentes/genética , Células Madre/metabolismo , Animales , Células Cultivadas , Electroporación , Expresión Génica , Genes Reporteros , Integrasas/genética , Operón Lac , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Transgenes , Proteínas Virales/genética , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...