Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.495
Filtrar
1.
Animal Model Exp Med ; 7(2): 106-113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38720238

RESUMEN

BACKGROUND: Androgenic alopecia (AGA) is the most common type of hair loss in men, and there are many studies on the treatment of hair loss by platelet-rich plasma (PRP). The human scalp contains a huge microbiome, but its role in the process of hair loss remains unclear, and the relationship between PRP and the microbiome needs further study. Therefore, the purpose of this study was to investigate the effect of PRP treatment on scalp microbiota composition. METHODS: We performed PRP treatment on 14 patients with AGA, observed their clinical efficacy, and collected scalp swab samples before and after treatment. The scalp microflora of AGA patients before and after treatment was characterized by amplifying the V3-V4 region of the 16 s RNA gene and sequencing for bacterial identification. RESULTS: The results showed that PRP was effective in the treatment of AGA patients, and the hair growth increased significantly. The results of relative abundance analysis of microbiota showed that after treatment, g_Cutibacterium increased and g_Staphylococcus decreased, which played a stable role in scalp microbiota. In addition, g_Lawsonella decreased, indicating that the scalp oil production decreased after treatment. CONCLUSIONS: The findings suggest that PRP may play a role in treating AGA through scalp microbiome rebalancing.


Asunto(s)
Alopecia , Microbiota , Plasma Rico en Plaquetas , Cuero Cabelludo , Humanos , Alopecia/terapia , Alopecia/microbiología , Masculino , Adulto , Cuero Cabelludo/microbiología , Persona de Mediana Edad , Adulto Joven
2.
Sci Total Environ ; 932: 173103, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729358

RESUMEN

Excessive synthetic nitrogen (N) inputs in intensive orchard agrosystems of developing countries are a growing concern regarding their adverse impacts on fruit production and the environment. Quantifying the distribution and contribution of fertilizer N is essential for increasing N use efficiency and minimizing N loss in orchards. A 15N tracer experiment was performed in a young dwarf apple orchard over two growing seasons to determine the fertilizer N transformation and fate. Fertilizer N primarily contributed to 25 % to 75 % of soil nitrate in the top 60 cm, but the contribution to soil microbial biomass N and fixed ammonium was <8 %, with the contribution to plant N ranging from 9 % to 19 %. In most growth periods, soil nitrate and fixed ammonium contents derived from native soil with N fertilization were higher than those not receiving N fertilizer. The N use efficiency of plants was only 2.6 % and 4.9 % in the first and second seasons, respectively, in contrast to 56.6 % and 54.0 % of N recovered in soil. Meanwhile, N assimilated into microbial biomass accounted for 0.8 %, and the proportion fixed by clay minerals was 3.5 %-5.2 %. One season after N fertilization, the nitrate below the 1 m soil layers accounted for 4.6 % of the applied N fertilizer, and the proportion increased to 22.5 % after two seasons. The N loss rate via N2O emission was 0.4 % over two years. The application of N fertilizer facilitated indigenous soil N mineralization, and abiotic ammonium fixation more efficiently retained synthetic N than microbial immobilization. These findings provide new insight into orchard N cycling, and attention should be given to the improvement of soil N retention and turnover capacity regulated by soil microbial and abiotic processes, as well as the potential environmental impacts of additional soil N mineralization resulting from prolonged chemical N fertilization.

3.
eNeuro ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729764

RESUMEN

Intracerebral hemorrhage (ICH), the most common subtype of hemorrhagic stroke, leads to cognitive impairment and imposes significant psychological burdens on patients. Hippocampal neurogenesis has been shown to play an essential role in cognitive function. Our previous study has shown that tetrahydrofolate (THF) promotes the proliferation of neural stem cells (NSCs). However, the effect of THF on cognition after ICH and the underlying mechanisms remain unclear. Here, we demonstrated that administration of THF could restore cognition after ICH. Using Nestin-GFP mice, we further revealed that THF enhanced the proliferation of hippocampal NSCs and neurogenesis after ICH. Mechanistically, we found that THF could prevent ICH-induced elevated level of PTEN and decreased expressions of phosphorylated AKT and mTOR. Furthermore, conditional deletion of PTEN in NSCs of hippocampus attenuated the inhibitory effect of ICH on the proliferation of NSCs and abnormal neurogenesis. Taken together, these results provide molecular insights into ICH-induced cognitive impairment and suggest translational clinical therapeutic strategy for hemorrhagic stroke.Significance Statement Intracerebral hemorrhage (ICH) has been associated with cognitive dysfunction, yet its underlying mechanism remains elusive. Tetrahydrofolate (THF) has shown potential in promoting the proliferation of neural stem cells (NSCs), but its specific impact on cognitive recovery following ICH is still to be confirmed. Through the utilization of the Nestin-GFP genetic marker to track endogenous NSCs in mice, our study revealed that THF could regulate PTEN pathway to ameliorate cognitive impairment post-ICH by enhancing the proliferation of NSCs and sustaining neurogenesis. These findings contribute to valuable insights into the molecular mechanisms involved and suggest potential clinical applications for enhancing cognitive function recovery after ICH.

4.
RSC Adv ; 14(22): 15491-15498, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38741972

RESUMEN

Massive hemorrhage caused by injuries and surgical procedures is a major challenge in emergency medical scenarios. Conventional means of hemostasis often fail to rapidly and efficiently control bleeding, especially in inaccessible locations. Herein, a type of smart nanoliposome with ultrasonic responsiveness, loaded with thrombin (thrombin@liposome, named TNL) was developed to serve as an efficient and rapid hemostatic agent. Firstly, the hydrophilic cavities of the liposomes were loaded onto the sono-sensitive agent protoporphyrin. Secondly, a singlet oxygen-sensitive chemical bond was connected with the hydrophobic and hydrophilic ends of liposomes in a chemical bond manner. Finally, based on the host guest effect between ultrasound and the sono-sensitizer, singlet oxygen is continuously generated, which breaks the hydrophobic and hydrophilic ends of liposome fragments, causing spatial collapse of the TNL structure, swiftly releases thrombin loaded in the hydrophilic capsule cavity, thereby achieving accurate and rapid local hemostasis (resulted in a reduction of approximately 67% in bleeding in the rat hemorrhage model). More importantly, after thorough assessments of biocompatibility and biodegradability, it has been confirmed that TNL possesses excellent biosafety, providing a new avenue for efficient and precise hemostasis.

5.
Angew Chem Int Ed Engl ; : e202404798, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713516

RESUMEN

A novel gold(I)-cluster-based twin-cage is constructed by post-clustering covalent modification of a hexa-aldehyde cluster precursor with triaminotriethylamines. The cages-on-cluster structure have double cavities and four binding sites, showing site discriminative binding for silver(I) and copper(I) guests. The guests in the tripodal hats affect the luminescence of the cluster: tetra-silver(I) host-guest complex is weak red emissive, while bis-copper(I)-bis-silver(I) one is non-emissive but a stimuli-responsive supramolecule. The copper(I) ion inside the tri-imine cavity is oxidation sensitive, which enable the release of the bright emissive precursor cluster triggered by H2O2 solution. The hybridization of a cluster with cavities to construct a cluster-based cage presents an innovative concept for functional cluster design, and the post-clustering covalent modification opens up new avenues of finely tuning the properties of clusters.

6.
Biochem Biophys Res Commun ; 717: 150028, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38714016

RESUMEN

Mycoplasma pneumoniae (MP),as the most commonly infected respiratory pathogen in community-acquired pneumonia in preschool children,has becoming a prominent factor affecting children's respiratory health.Currently, there is a lack of easy, rapid, and accurate laboratory testing program for MP infection, which causes comparatively difficulty for clinical diagnostic.Here,we utilize loop-mediated isothermal amplification (LAMP) to amplify and characterize the P1 gene of MP, combined with nucleic acid lateral flow (NALF) for fast and visuallized detection of MP.Furthermore, we evaluated and analyzed the sensitivity, specificity and methodological consistency of the method.The results showed that the limit of detection(LoD) of MP-LAMP-NALF assay was down to 100 copys per reaction and there was no cross-reactivity with other pathogens infected the respiratory system. The concordance rate between MP-LAMP-NALF assay with quantitative real-time PCR was 94.3 %,which exhibiting excellent testing performance.We make superior the turnaround time of the MP-LAMP-NALF assay, which takes only about 50 min. In addition, there is no need for precision instruments and no restriction on the laboratory site.Collectively, LAMP-NALF assay targeting the P1 gene for Mycoplasma pneumoniae detection was a easy, precise and visual test which could be widely applied in outpatient and emergency departments or primary hospitals.When further optimized, it could be used as "point-of-care testing" of pathogens or multiple testing for pathogens.

7.
Front Microbiol ; 15: 1359698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706969

RESUMEN

Soil salinization is a global constraint that significantly hampers agricultural production, with cotton being an important cash crop that is not immune to its detrimental effects. The rhizosphere microbiome plays a critical role in plant health and growth, which assists plants in resisting adverse abiotic stresses including soil salinization. This study explores the impact of soil salinization on cotton, including its effects on growth, yield, soil physical and chemical properties, as well as soil bacterial community structures. The results of ß-diversity analysis showed that there were significant differences in bacterial communities in saline-alkali soil at different growth stages of cotton. Besides, the more severity of soil salinization, the more abundance of Proteobacteria, Bacteroidota enriched in rhizosphere bacterial composition where the abundance of Acidobacteriota exhibited the opposite trend. And the co-occurrence network analysis showed that soil salinization affected the complexity of soil bacterial co-occurrence network. These findings provide valuable insights into the mechanisms by which soil salinization affects soil microorganisms in cotton rhizosphere soil and offer guidance for improving soil salinization using beneficial microorganisms.

8.
Nurse Educ Pract ; 77: 103974, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38728791

RESUMEN

AIM: To explore the scope and form of prescriptions for blood and hematopoietic drugs that future advanced practice nurses (APNs) in the Department of Haematology and to establish a medicine prescription training content in China. BACKGROUND: Because the increasing number of doctors cannot meet the increasing demand for medical care with the population growth, many countries have begun to explore the medical team structure and practice areas, among which nurse prescribing rights have been the most effective. However, China's higher nursing education system still lacks education and training on nurse prescription. DESIGN: On the basis of literature research and semi-structured interviews, a set of nursing prescription content, education, training and practice system suitable for Chinese nurses was jointly created. METHODS: Two rounds of expert consultation between 23 haematology nursing experts and clinical experts determined the training content of blood system drugs and medicine prescriptions. Additionally, on the basis of the 23 experts,13 experts engaged in clinical and education, teaching and training experts were involved. Two rounds of expert consultation with 36 experts identified a general clinical practice training program for advanced practice nurses in China. RESULTS: Regarding contents and forms of hematopoietic drugs, the study concluded that advanced practice nurses in haematology department can prescribe anti-anemia drugs, anti-coagulant drugs and anti-thrombotic drugs in 2 categories and 16 drugs. Of these, four kinds of drugs should be prescribed in the form of protocol prescription. One kind of drug should be prescribed in the form of extended prescription and 11 drugs should be prescribed in the form of independent/extended or agreed/extended prescription. Regarding training content, the study obtained the training content of nurses' medicine prescriptions in eight clinical circumstances and the medicine prescription training content for common diseases of the blood system. The required specifications and the medicine prescription decision skills of nurses were sorted out according to different prescription types. CONCLUSIONS: The degrees of expert authority were both higher in consultations. Moreover, the results after consultation were reliable. It was recommended that haematology APNs could prescribe anti-anaemic drugs and anti-coagulation and anti-thrombotic drugs. Furthermore, most drugs should be prescribed in the form of independent/extended or agreed/extended prescriptions. The establishment of a medicine prescription training content for haematology APNs is expected to provide a reference for clinical practice education and training for drug prescriptive authority applicants for blood and hematopoietic system nurses in China.

9.
BMC Oral Health ; 24(1): 521, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698377

RESUMEN

BACKGROUND: Oral mucosal diseases are similar to the surrounding normal tissues, i.e., their many non-salient features, which poses a challenge for accurate segmentation lesions. Additionally, high-precision large models generate too many parameters, which puts pressure on storage and makes it difficult to deploy on portable devices. METHODS: To address these issues, we design a non-salient target segmentation model (NTSM) to improve segmentation performance while reducing the number of parameters. The NTSM includes a difference association (DA) module and multiple feature hierarchy pyramid attention (FHPA) modules. The DA module enhances feature differences at different levels to learn local context information and extend the segmentation mask to potentially similar areas. It also learns logical semantic relationship information through different receptive fields to determine the actual lesions and further elevates the segmentation performance of non-salient lesions. The FHPA module extracts pathological information from different views by performing the hadamard product attention (HPA) operation on input features, which reduces the number of parameters. RESULTS: The experimental results on the oral mucosal diseases (OMD) dataset and international skin imaging collaboration (ISIC) dataset demonstrate that our model outperforms existing state-of-the-art methods. Compared with the nnU-Net backbone, our model has 43.20% fewer parameters while still achieving a 3.14% increase in the Dice score. CONCLUSIONS: Our model has high segmentation accuracy on non-salient areas of oral mucosal diseases and can effectively reduce resource consumption.


Asunto(s)
Enfermedades de la Boca , Mucosa Bucal , Humanos , Enfermedades de la Boca/diagnóstico por imagen , Mucosa Bucal/patología , Mucosa Bucal/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
10.
Polymers (Basel) ; 16(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732738

RESUMEN

Plastics offer many advantages and are widely used in various fields. Nevertheless, most plastics derived from petroleum are slow to degrade due to their stable polymer structure, posing serious threats to organisms and ecosystems. Thus, developing environmentally friendly and biodegradable plastics is imperative. In this study, biodegradable cellulose/multi-walled carbon nanotube (MCNT) hybrid gels and films with improved ultraviolet-shielding properties were successfully prepared using cotton textile waste as a resource. It was proven that MCNTs can be dispersed evenly in cellulose without any chemical or physical pretreatment. It was found that the contents of MCNTs had obvious effects on the structures and properties of hybrid films. Particularly, the averaged transmittance of cellulose/MCNT composite films in the range of 320-400 nm (T320-400) and 290-320 nm (T290-320) can be as low as 19.91% and 16.09%, when the content of MCNTs was 4.0%, much lower than those of pure cellulose films (T320-400: 84.12% and T290-320: 80.03%). Meanwhile, the water contact angles of the cellulose/MCNT films were increased by increasing the content of MCNTs. Most importantly, the mechanical performance of cellulose/MCNT films could be controlled by the additives of glycerol and MCNTs. The tensile strength of the cellulose/MCNT films was able to reach as high as 20.58 MPa, while the elongation at break was about 31.35%. To summarize, transparent cellulose/MCNT composites with enhanced ultraviolet-shielding properties can be manufactured successfully from low-cost cotton textile waste, which is beneficial not only in terms of environmental protection, but also the utilization of natural resources.

11.
Front Endocrinol (Lausanne) ; 15: 1385575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745953

RESUMEN

The brain regulates multiple physiological processes in fish. Despite this, knowledge about the basic structure and function of distinct brain regions in non-model fish species remains limited due to their diversity and the scarcity of common biomarkers. In the present study, four major brain parts, the telencephalon, diencephalon, mesencephalon and rhombencephalon, were isolated in largemouth bass, Micropterus salmoides. Within these parts, nine brain regions and 74 nuclei were further identified through morphological and cytoarchitectonic analysis. Transcriptome analysis revealed a total of 7153 region-highly expressed genes and 176 region-specifically expressed genes. Genes related to growth, reproduction, emotion, learning, and memory were significantly overexpressed in the olfactory bulb and telencephalon (OBT). Feeding and stress-related genes were in the hypothalamus (Hy). Visual system-related genes were predominantly enriched in the optic tectum (OT), while vision and hearing-related genes were widely expressed in the cerebellum (Ce) region. Sensory input and motor output-related genes were in the medulla oblongata (Mo). Osmoregulation, stress response, sleep/wake cycles, and reproduction-related genes were highly expressed in the remaining brain (RB). Three candidate marker genes were further identified for each brain regions, such as neuropeptide FF (npff) for OBT, pro-melanin-concentrating hormone (pmch) for Hy, vesicular inhibitory amino acid transporter (viaat) for OT, excitatory amino acid transporter 1 (eaat1) for Ce, peripherin (prph) for Mo, and isotocin neurophysin (itnp) for RB. Additionally, the distribution of seven neurotransmitter-type neurons and five types of non-neuronal cells across different brain regions were analyzed by examining the expression of their marker genes. Notably, marker genes for glutamatergic and GABAergic neurons showed the highest expression levels across all brain regions. Similarly, the marker gene for radial astrocytes exhibited high expression compared to other markers, while those for microglia were the least expressed. Overall, our results provide a comprehensive overview of the structural and functional characteristics of distinct brain regions in the largemouth bass, which offers a valuable resource for understanding the role of central nervous system in regulating physiological processes in teleost.


Asunto(s)
Lubina , Biomarcadores , Encéfalo , Neuronas , Animales , Lubina/metabolismo , Lubina/genética , Biomarcadores/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Telencéfalo/metabolismo
12.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746280

RESUMEN

Repetitive satellite DNAs, divergent in nucleic-acid sequence and size across eukaryotes, provide a physical site for centromere assembly to orchestrate chromosome segregation during the cell cycle. These non-coding DNAs are transcribed by RNA polymerase (RNAP) II and the transcription has been shown to play a role in chromosome segregation, but a little is known about the regulation of centromeric transcription, especially in higher organisms with tandemly-repeated-DNA-sequence centromeres. Using RNA interference knockdown, chemical inhibition and AID/IAA degradation, we show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite on centromeres in human cells. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation on centromeres. Interestingly, in response to DNA double-stranded breaks (DSBs) induced by chemotherapy drugs or CRSPR/Cas9, α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner. These DSB-induced α-satellite RNAs were predominantly derived from the α-satellite high-order repeats of human centromeres and forms into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.

13.
Mol Cell Biochem ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748384

RESUMEN

Axis inhibitor protein 1 (AXIN1) is a protein recognized for inhibiting tumor growth and is commonly involved in cancer development. In this study, we explored the potential molecular mechanisms that connect alternative splicing of AXIN1 to the metastasis of hepatocellular carcinoma (HCC). Transcriptome sequencing, RT‒PCR, qPCR and Western blotting were utilized to determine the expression levels of AXIN1 in human HCC tissues and HCC cells. The effects of the AXIN1 exon 9 alternative splice isoform and SRSF9 on the migration and invasion of HCC cells were assessed through wound healing and Transwell assays, respectively. The interaction between SRSF9 and AXIN1 was investigated using UV crosslink RNA immunoprecipitation, RNA pulldown, and RNA immunoprecipitation assays. Furthermore, the involvement of the AXIN1 isoform and SRSF9 in HCC metastasis was validated in a nude mouse model. AXIN1-L (exon 9 including) expression was downregulated, while AXIN1-S (exon 9 skipping) was upregulated in HCC. SRSF9 promotes the production of AXIN1-S by interacting with the sequence of exons 8 and 10 of AXIN1. AXIN1-S significantly promoted HCC cells migration and invasion by activating the Wnt pathway, while the opposite effects were observed for AXIN1-L. In vivo experiments demonstrated that AXIN1-L inhibited HCC metastasis, whereas SRSF9 promoted HCC metastasis in part by regulating the level of AXIN1-S. AXIN1, a tumor suppressor protein that targets the AXIN1/Wnt/ß-catenin signaling axis, may be a promising prognostic factor and a valuable therapeutic target for HCC.

14.
Mol Biotechnol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744789

RESUMEN

Non-small cell lung cancer (NSCLC) is a fatal malignancy all over the world. Emerging studies have shown that curcumin might repress NSCLC progression by regulating ferroptosis, but the underlying mechanism remains unclear. 16HBE, LK-2, and H1650 cell viability was detected using Cell Counting Kit-8 assay. LK-2 and H1650 cell proliferation, apoptosis, and angiopoiesis were measured using 5-ethynyl-2'-deoxyuridine, flow cytometry, and tube formation assay. Superoxide dismutase, Malondialdehyde, Glutathione, and lactate dehydrogenase levels in LK-2 and H1650 cells were examined using special assay kits. Fe+ level was assessed using an iron assay kit. Doublesex and Mab-3 related Transcription Factor 3 (DMRT3) and solute carrier family 7 member 11 (SLC7A11) protein levels were detected using western in NSCLC tissues, adjacent matched normal tissues, 16HBE cells, LK-2 cells, H1650 cells, and xenograft tumor tissues. Glutathione peroxidase 4, Acyl-CoA Synthetase Long Chain Family Member 4, and transferrin receptor 1 protein levels in LK-2 and H1650 cells were examined by western blot assay. DMRT3 and SLC7A11 levels were determined using real-time quantitative polymerase chain reaction. After JASPAR prediction, binding between DMRT3 and SLC7A11 promoter was verified using Chromatin immunoprecipitation and dual-luciferase reporter assays in LK-2 and H1650 cells. Role of curcumin on NSCLC tumor growth was assessed using the xenograft tumor model in vivo. Curcumin blocked NSCLC cell proliferation and angiopoiesis, and induced apoptosis and ferroptosis. DMRT3 or SLC7A11 upregulation partly abolished the suppressive role of curcumin on NSCLC development. In mechanism, DMRT3 was a transcription factor of SLC7A11 and increased the transcription of SLC7A11 via binding to its promoter region. Curcumin inhibited NSCLC growth in vivo by modulating DMRT3. Curcumin might constrain NSCLC cell malignant phenotypes partly through the DMRT3/SLC7A11 axis, providing a promising therapeutic strategy for NSCLC.

15.
Virulence ; 15(1): 2350775, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38736041

RESUMEN

OBJECTIVES: The translocation of intestinal flora has been linked to the colonization of diverse and heavy lower respiratory flora in patients with septic ARDS, and is considered a critical prognostic factor for patients. METHODS: On the first and third days of ICU admission, BALF, throat swab, and anal swab were collected, resulting in a total of 288 samples. These samples were analyzed using 16S rRNA analysis and the traceability analysis of new generation technology. RESULTS: On the first day, among the top five microbiota species in abundance, four species were found to be identical in BALF and throat samples. Similarly, on the third day, three microbiota species were found to be identical in abundance in both BALF and throat samples. On the first day, 85.16% of microorganisms originated from the throat, 5.79% from the intestines, and 9.05% were unknown. On the third day, 83.52% of microorganisms came from the throat, 4.67% from the intestines, and 11.81% were unknown. Additionally, when regrouping the 46 patients, the results revealed a significant predominance of throat microorganisms in BALF on both the first and third day. Furthermore, as the disease progressed, the proportion of intestinal flora in BALF increased in patients with enterogenic ARDS. CONCLUSIONS: In patients with septic ARDS, the main source of lung microbiota is primarily from the throat. Furthermore, the dynamic trend of the microbiota on the first and third day is essentially consistent.It is important to note that the origin of the intestinal flora does not exclude the possibility of its origin from the throat.


Asunto(s)
Bacterias , Líquido del Lavado Bronquioalveolar , Microbiota , Faringe , ARN Ribosómico 16S , Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Masculino , Femenino , Síndrome de Dificultad Respiratoria/microbiología , Persona de Mediana Edad , Faringe/microbiología , ARN Ribosómico 16S/genética , Líquido del Lavado Bronquioalveolar/microbiología , Anciano , Sepsis/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Alveolos Pulmonares/microbiología , Adulto , Unidades de Cuidados Intensivos , Microbioma Gastrointestinal
16.
Cancer Cell Int ; 24(1): 170, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741108

RESUMEN

Mousedouble minute 2 (MDM2) is one of the molecules activated by p53 and plays an important role in the regulation of p53. MDM2 is generally believed to function as a negative regulator of p53 by facilitating its ubiquitination and subsequent degradation. Consequently, blocked p53 activity often fails in damaged cells to undergo cell cycle arrest or apoptosis. Given that around 50% of human cancers involve the inactivation of p53 through genetic mutations, and directly targeting p53 through drug development has limited feasibility, targeting molecular regulation related to p53 has great potential and has become a research hotspot. For example, developing drugs that target the interaction between p53 and MDM2. Such drugs aim to reactivate p53 by targeting either MDM2 binding or p53 phosphorylation. Researchers have identified various compounds that can serve as inhibitors, either by directly binding to MDM2 or by modifying p53 through phosphorylation. Furthermore, a significant correlation exists between the expression of MDM2 in tumors and the effectiveness of immunotherapy, predominantly in the context of immune checkpoint inhibition. This review presents a comprehensive overview of the molecular characteristics of MDM2 and the current state of research on MDM2-targeting inhibitors. It includes a review of the impact of MDM2 targeting on the efficacy of immunotherapy, providing guidance and direction for the development of drugs targeting the p53-MDM2 interaction and optimization of immunotherapy.

17.
RSC Adv ; 14(21): 14697-14701, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38716094

RESUMEN

A versatile photoredox-catalyzed three-component sulfonylation of diaryliodonium salts with DABSO and silyl enolates involving the insertion of SO2 was developed. Moreover, by employing ß-alkyl substituted silyl enolates as substrates, the sulfonylation would give α-alkyl substituted ß-keto sulfones, which are difficult to accessed by previous method involving the insertion of SO2.

18.
Front Cell Infect Microbiol ; 14: 1371916, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716199

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has become a challenging problem in pig industry worldwide, causing significant profit losses. Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain and has been shown to exert protective effects on the intestinal dysfunction caused by PEDV. This study evaluated the effect of LGG on the gut health of lactating piglets challenged with PEDV. Fifteen piglets at 7 days of age were equally assigned into 3 groups (5 piglets per group): 1) control group (basal diet); 2) PEDV group: (basal diet + PEDV challenged); 3) LGG + PEDV group (basal diet + 3×109 CFU/pig/day LGG + PEDV). The trial lasted 11 days including 3 days of adaptation. The treatment with LGG was from D4 to D10. PEDV challenge was carried out on D8. PEDV infection disrupted the cell structure, undermined the integrity of the intestinal tract, and induced oxidative stress, and intestinal damage of piglets. Supplementation of LGG improved intestinal morphology, enhanced intestinal antioxidant capacity, and alleviated jejunal mucosal inflammation and lipid metabolism disorders in PEDV-infected piglets, which may be regulated by LGG by altering the expression of TNF signaling pathway, PPAR signaling pathway, and fat digestion and absorption pathway.


Asunto(s)
Infecciones por Coronavirus , Suplementos Dietéticos , Lacticaseibacillus rhamnosus , Virus de la Diarrea Epidémica Porcina , Probióticos , Enfermedades de los Porcinos , Animales , Porcinos , Probióticos/administración & dosificación , Enfermedades de los Porcinos/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/terapia , Estrés Oxidativo , Intestinos/patología , Polvos , Mucosa Intestinal/patología
19.
Sci Rep ; 14(1): 10549, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719886

RESUMEN

In the construction stage, due to construction errors and longitudinal differential settlement during tunnel operation, the amount of dislocation and opening at the segment joint increases, increasing the likelihood of water leakage. Therefore, it is necessary to conduct an in-depth study on the influence of the amount of dislocation and opening at the segment joints on the contact stress of the longitudinal section. Firstly, through theoretical analysis, this paper deduces that the waterproof performance of the gasket depends not only on its own contact area, linear compression stiffness, and Poisson's ratio but also on the height of the segment joint specimen and the amount of joint opening caused by the sinking offset angle. Then, the effects of different openings and dislocations at the segment joints on the contact stress of the segment gasket section were compared using numerical simulation and model experiments. Through numerical simulation, it is found that the dislocation has a greater influence on the longitudinal left section. The average contact stress at 16 mm is 28.3% lower than that at 4 mm, and the influence of the opening amount on the sealing gasket section is greater than that of the dislocation. Combined with the test results, it is also shown that the influence of the opening amount of the waterproof performance at the segment joint is greater than that of the dislocation, and the waterproof rate of the segment gasket section joint is greater than 40% under the modified working condition.

20.
Angew Chem Int Ed Engl ; : e202405287, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712847

RESUMEN

Marangoni self-propulsion refers to motions of liquid or solids driven by a surface tension gradient, and has applications in soft robots/devices, cargo delivery, self-assembly etc. However, two problems remain to be addressed for motion control (e.g., ON-OFF) with conventional surfactants as Marangoni fuel: (1) limited motion lifetime due to saturated interfacial adsorption of surfactants; (2) in- situ motion stop is difficult once Marangoni flows are triggered. Instead of covalent surfactants, supra-amphiphiles with hydrophilic and hydrophobic parts linked noncovalently, hold promise to solve these problems owing to its dynamic and reversible surface activity responsively. Here, we propose a new concept of 'supra-amphiphile fuel and switch' based on the facile synthesis of disodium-4-azobenzene-amino-1,3-benzenedisulfonate (DABS) linked by a Schiff base, which has amphiphilicity for self-propulsion, hydrolyzes timely to avoid saturated adsorption and provides pH-responsive control over ON-OFF motion. The self-propulsion lifetime is extended by 50-fold with DABS and motion control is achieved. The mechanism is revealed with coupled interface chemistry involving two competitive processes of interfacial adsorption and hydrolysis of DABS based on both experiments and simulation. The concept of 'supra-amphiphile fuel and switch' provides an active solution to prolong and control Marangoni self-propulsive devices for the advance of intelligent material systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...