Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2320345121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630723

RESUMEN

The TWIK-related acid-sensitive K+ channel 3 (TASK3) belongs to the two-pore domain (K2P) potassium channel family, which regulates cell excitability by mediating a constitutive "leak" potassium efflux in the nervous system. Extracellular acidification inhibits TASK3 channel, but the molecular mechanism by which channel inactivation is coupled to pH decrease remains unclear. Here, we report the cryo-electron microscopy structures of human TASK3 at neutral and acidic pH. Structural comparison revealed selectivity filter (SF) rearrangements upon acidification, characteristic of C-type inactivation, but with a unique structural basis. The extracellular mouth of the SF was prominently dilated and simultaneously blocked by a hydrophobic gate. His98 protonation shifted the conformational equilibrium between the conductive and C-type inactivated SF toward the latter by engaging a cation-π interaction with Trp78, consistent with molecular dynamics simulations and electrophysiological experiments. Our work illustrated how TASK3 is gated in response to extracellular pH change and implies how physiological stimuli might directly modulate the C-type gating of K2P channels.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Protones , Humanos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Microscopía por Crioelectrón , Simulación de Dinámica Molecular
2.
ACS Cent Sci ; 10(3): 579-594, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38559310

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Unfortunately, targeting STAT3 with small molecules has proven to be very challenging, and for full activation of STAT3, the cooperative phosphorylation of both tyrosine 705 (Tyr705) and serine 727 (Ser727) is needed. Further, a selective inhibitor of STAT3 dual phosphorylation has not been developed. Here, we identified a low nanomolar potency and highly selective small-molecule STAT3 inhibitor that simultaneously inhibits both STAT3 Tyr705 and Ser727 phosphorylation. YY002 potently inhibited STAT3-dependent tumor cell growth in vitro and achieved potent suppression of tumor growth and metastasis in vivo. More importantly, YY002 exhibited favorable pharmacokinetics, an acceptable safety profile, and superior antitumor efficacy compared to BBI608 (STAT3 inhibitor that has advanced into phase III trials). For the mechanism, YY002 is selectively bound to the STAT3 Src Homology 2 (SH2) domain over other STAT members, which strongly suppressed STAT3 nuclear and mitochondrial functions in STAT3-dependent cells. Collectively, this study suggests the potential of small-molecule STAT3 inhibitors as possible anticancer therapeutic agents.

3.
Sci China Life Sci ; 67(5): 986-995, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38319473

RESUMEN

The adenosine subfamily G protein-coupled receptors A2AR and A2BR have been identified as promising cancer immunotherapy candidates. One of the A2AR/A2BR dual antagonists, AB928, has progressed to a phase II clinical trial to treat rectal cancer. However, the precise mechanism underlying its dual-antagonistic properties remains elusive. Herein, we report crystal structures of the A2AR complexed with AB928 and a selective A2AR antagonist 2-118. The structures revealed a common binding mode on A2AR, wherein the ligands established extensive interactions with residues from the orthosteric and secondary pockets. In contrast, the cAMP assay and A2AR and A2BR molecular dynamics simulations indicated that the ligands adopted distinct binding modes on A2BR. Detailed analysis of their chemical structures suggested that AB928 readily adapted to the A2BR pocket, while 2-118 did not due to intrinsic differences. This disparity potentially accounted for the difference in inhibitory efficacy between A2BR and A2AR. This study serves as a valuable structural template for the future development of selective or dual inhibitors targeting A2AR/A2BR for cancer therapy.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Simulación de Dinámica Molecular , Receptor de Adenosina A2A , Humanos , Antagonistas del Receptor de Adenosina A2/química , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/metabolismo , Sitios de Unión , Ligandos , Cristalografía por Rayos X , Unión Proteica , Receptor de Adenosina A2B/metabolismo , Receptor de Adenosina A2B/química
4.
Nat Chem Biol ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167918

RESUMEN

Pharmacological activation of voltage-gated ion channels by ligands serves as the basis for therapy and mainly involves a classic gating mechanism that augments the native voltage-dependent open probability. Through structure-based virtual screening, we identified a new scaffold compound, Ebio1, serving as a potent and subtype-selective activator for the voltage-gated potassium channel KCNQ2 and featuring a new activation mechanism. Single-channel patch-clamp, cryogenic-electron microscopy and molecular dynamic simulations, along with chemical derivatives, reveal that Ebio1 engages the KCNQ2 activation by generating an extended channel gate with a larger conductance at the saturating voltage (+50 mV). This mechanism is different from the previously observed activation mechanism of ligands on voltage-gated ion channels. Ebio1 caused S6 helices from residues S303 and F305 to perform a twist-to-open movement, which was sufficient to open the KCNQ2 gate. Overall, our findings provide mechanistic insights into the activation of KCNQ2 channel by Ebio1 and lend support for KCNQ-related drug development.

5.
Cell Rep ; 42(8): 112926, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37543949

RESUMEN

Volume-regulated anion channels (VRACs) are hexamers of LRRC8 proteins that are crucial for cell volume regulation. N termini (NTs) of the obligatory LRRC8A subunit modulate VRACs activation and ion selectivity, but the underlying mechanisms remain poorly understood. Here, we report a 2.8-Å cryo-electron microscopy structure of human LRRC8A that displays well-resolved NTs. Amino-terminal halves of NTs fold back into the pore and constrict the permeation path, thereby determining ion selectivity together with an extracellular selectivity filter with which it works in series. They also interact with pore-surrounding helices and support their compact arrangement. The C-terminal halves of NTs interact with intracellular loops that are crucial for channel activation. Molecular dynamics simulations indicate that low ionic strength increases NT mobility and expands the radial distance between pore-surrounding helices. Our work suggests an unusual pore architecture with two selectivity filters in series and a mechanism for VRAC activation by cell swelling.


Asunto(s)
Proteínas de la Membrana , Humanos , Microscopía por Crioelectrón , Proteínas de la Membrana/metabolismo , Aniones/metabolismo , Tamaño de la Célula , Concentración Osmolar
6.
J Med Chem ; 66(9): 6218-6238, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36880691

RESUMEN

Nowadays, small-molecule drugs have become an indispensable part of tumor immunotherapy. Accumulating evidence has indicated that specifically blocking PGE2/EP4 signaling to induce robust antitumor immune response represents an attractive immunotherapy strategy. Herein, a 2H-indazole-3-carboxamide containing compound 1 was identified as a EP4 antagonist hit by screening our in-house small-molecule library. Systematic structure-activity relationship exploration leads to the discovery of compound 14, which displayed single-nanomolar EP4 antagonistic activity in a panel of cell functional assays, high subtype selectivity, and favorable drug-like profiles. Moreover, compound 14 profoundly inhibited the up-regulation of multiple immunosuppression-related genes in macrophages. Oral administration of compound 14, either as monotherapy or in combination with an anti-PD-1 antibody, significantly impaired tumor growth via enhancing cytotoxic CD8+ T cell-mediated antitumor immunity in a syngeneic colon cancer model. Thus, these results demonstrate the potential of compound 14 as a candidate for developing novel EP4 antagonists for tumor immunotherapy.


Asunto(s)
Neoplasias del Colon , Indazoles , Subtipo EP4 de Receptores de Prostaglandina E , Humanos , Neoplasias del Colon/patología , Inmunoterapia , Prostaglandinas , Subtipo EP4 de Receptores de Prostaglandina E/antagonistas & inhibidores , Transducción de Señal , Indazoles/química , Indazoles/farmacología
7.
J Mol Biol ; 435(6): 167979, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716818

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) play a pivotal role in human immune responses, cellular communication, organ development, and other processes. GPR110 belongs to the aGPCR subfamily VI and was initially identified as an oncogene involved in lung and prostate cancers. GPR110 contains tandem adhesion domains at the extracellular region that mediate inter-cellular signaling. However, the structural organization and signaling mechanism for these tandem domains remain unclear. Here, we report the crystal structure of a GPR110 fragment composing the SEA, HormR, and GAIN domains at 2.9 Å resolution. The structure together with MD simulations reveal rigid connections between these domains that are stabilized by complementary interfaces. Strikingly, we found N-linked carbohydrates attached to N389 of the GAIN domain form extensive contacts with the preceding HormR domain. These interactions appear to be critical for folding, as removal of the glycosylation site greatly decreases expression of the GPR110 extracellular fragment. We further demonstrate that the ligand synaptamide fits well within the hydrophobic pocket occupied by the Stachel peptide in the rest state. This suggests that the agonist may function by removing the Stachel peptide which in turn redocks to the orthosteric pocket for receptor activation. Taken together, our structural findings and analyses provide novel insights into the activation mechanism for aGPCRs.


Asunto(s)
Proteínas Oncogénicas , Receptores Acoplados a Proteínas G , Humanos , Masculino , Ligandos , Péptidos/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Transducción de Señal , Proteínas Oncogénicas/agonistas , Proteínas Oncogénicas/química , Etanolaminas/química , Dominios Proteicos , Cristalografía por Rayos X , Simulación de Dinámica Molecular
8.
Clin Cancer Res ; 29(4): 815-830, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36374556

RESUMEN

PURPOSE: Pancreatic cancer is the worst prognosis among all human cancers, and novel effective treatments are urgently needed. Signal transducer and activator of transcription 3 (STAT3) has been demonstrated as a promising target for pancreatic cancer. Meanwhile, selectively targeted STAT3 with small molecule remains been challenging. EXPERIMENTAL DESIGN: To specifically identify STAT3 inhibitors, more than 1.3 million compounds were screened by structure-based virtual screening and confirmed with the direct binding assay. The amino acid residues that WB436B bound to were verified by induced-fit molecular docking simulation, RosettaLigand computations, and site-directed mutagenesis. On-target effects of WB436B were examined by microscale thermophoresis, surface plasmon resonance, in vitro kinase assay, RNA sequencing, and selective cell growth inhibition assessment. In vivo studies were performed in four animal models to evaluate effects of WB436B on tumor growth and metastasis. Kaplan-Meier analyses were used to assess survival. RESULTS: WB436B selectively bound to STAT3 over other STAT families protein, and in vitro antitumor activities were improved by 10 to 1,000 fold than the representative STAT3 inhibitors. WB436B selectively inhibits STAT3-Tyr705 phosphorylation, STAT3 target gene expression, and the viability of STAT3-dependent pancreatic cancer cells. WB436B significantly suppresses tumor growth and metastasis in vivo and prolongs survival of tumor-bearing mice. Mechanistic studies showed that WB436B have unique binding sites located in STAT3 Src homology 2 domain. CONCLUSIONS: Our work presents the first-in-class selective STAT3 inhibitor WB436B as a potential therapeutic candidate for the treatment of pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Factor de Transcripción STAT3 , Humanos , Animales , Ratones , Factor de Transcripción STAT3/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Dominios Homologos src , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilación , Proliferación Celular , Apoptosis , Neoplasias Pancreáticas
9.
J Med Chem ; 65(15): 10285-10299, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35878013

RESUMEN

Under the known pharmacological activation mechanisms, activators allosterically or directly open potassium channel gates. However, herein, molecular dynamics simulations on TREK-1, a member of the channel class gated at the filter, suggested that negatively charged activators act with a gate-independent mechanism where compounds increase currents by promoting ions passing through the central cavity. Then, based on studies of KCNQ2, we uncovered that this noncanonical activation mechanism is shared by the other channel class gated at the helix-bundle crossing. Rational drug design found a novel KCNQ2 agonist, CLE030, which stably binds to the central cavity. Functional analysis, molecular dynamics simulations, and calculations of the potential of mean force revealed that the carbonyl oxygen of CLE030 influences permeant ions in the central cavity to contribute to its activation effects. Together, this study discovered a ligand-to-ion activation mechanism for channels that bypasses their gates and thus is conserved across subfamilies with different gates.


Asunto(s)
Activación del Canal Iónico , Simulación de Dinámica Molecular , Iones/farmacología
10.
J Med Chem ; 65(11): 7896-7917, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35640059

RESUMEN

Cancer cells can effectively suppress the natural immune response in humans, and prostaglandin E2 (PGE2) is a key mediator in the development of tumor cell resistance to immunotherapy. As a major contributor to PGE2-elicited immunosuppressive activity, the EP4 receptor promotes tumor development and progression in the tumor microenvironment, and the development of selective and potent EP4 receptor antagonists should have promising potential for tumor immunotherapy. Aiming at improving the drug-like properties, a series of 4,7-dihydro-5H-thieno[2,3-c]pyran derivatives were designed and synthesized through a scaffold hopping strategy. The most promising compound 47 exhibited good EP4 antagonistic activity and excellent subtype selectivity, as well as favorable drug-like properties. It effectively suppressed the expression of multiple immunosuppression-related genes in macrophages. Meanwhile, oral administration of compound 47, alone or in combination with anti-PD-1 antibody, significantly enhanced the antitumor immune response and inhibited tumor growth in the mouse CT26 colon carcinoma model.


Asunto(s)
Neoplasias del Colon , Subtipo EP4 de Receptores de Prostaglandina E , Animales , Neoplasias del Colon/patología , Dinoprostona , Inmunoterapia , Ratones , Subtipo EP2 de Receptores de Prostaglandina E , Microambiente Tumoral
11.
Cell Res ; 32(7): 638-658, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35459936

RESUMEN

Mutant isocitrate dehydrogenase 1 (mIDH1) drives tumorigenesis via producing oncometabolite R-2-hydroxyglutarate (R-2-HG) across various tumor types. However, mIDH1 inhibitors appear only effective in hematological tumors. The therapeutic benefit in solid tumors remains elusive, likely due to the complex tumor microenvironment. In this study, we discover that R-2-HG produced by IDH1-mutant tumor cells is preferentially imported into vascular endothelial cells and remodels mitochondrial respiration to promote tumor angiogenesis, conferring a therapeutic vulnerability in IDH1-mutant solid tumors. Mechanistically, SLC1A1, a Na+-dependent glutamate transporter that is preferentially expressed in endothelial cells, facilitates the influx of R-2-HG from the tumor microenvironment into the endothelial cells as well as the intracellular trafficking of R-2-HG from cytoplasm to mitochondria. R-2-HG hijacks SLC1A1 to promote mitochondrial Na+/Ca2+ exchange, which activates the mitochondrial respiratory chain and fuels vascular endothelial cell migration in tumor angiogenesis. SLC1A1 deficiency in mice abolishes mIDH1-promoted tumor angiogenesis as well as the therapeutic benefit of mIDH1 inhibitor in solid tumors. Moreover, we report that HH2301, a newly discovered mIDH1 inhibitor, shows promising efficacy in treating IDH1-mutant cholangiocarcinoma in preclinical models. Together, we identify a new role of SLC1A1 as a gatekeeper of R-2-HG-mediated crosstalk between IDH1-mutant tumor cells and vascular endothelial cells, and demonstrate the therapeutic potential of mIDH1 inhibitors in treating IDH1-mutant solid tumors via disrupting R-2-HG-promoted tumor angiogenesis.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores , Isocitrato Deshidrogenasa , Neoplasias , Animales , Células Endoteliales/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Glutaratos , Isocitrato Deshidrogenasa/genética , Ratones , Mitocondrias/metabolismo , Mutación , Microambiente Tumoral
12.
Cell Res ; 32(5): 461-476, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35115667

RESUMEN

Both opioids and nonsteroidal anti-inflammatory drugs (NSAIDS) produce deleterious side effects and fail to provide sustained relief in patients with chronic inflammatory pain. Peripheral neuroinflammation (PN) is critical for initiation and development of inflammatory pain. A better understanding of molecular mechanisms underlying PN would facilitate the discovery of new analgesic targets and the development of new therapeutics. Emerging evidence suggests that peripheral sensory neurons are not only responders to painful stimuli, but are also actively engaged in inflammation and immunity, whereas the intrinsic regulatory mechanism is poorly understood. Here we report the expression of proton-selective ion channel Hv1 in peripheral sensory neurons in rodents and humans, which was previously shown as selectively expressed in microglia in mammalian central nervous system. Neuronal Hv1 was up-regulated by PN or depolarizing stimulation, which in turn aggravates inflammation and nociception. Inhibiting neuronal Hv1 genetically or by a newly discovered selective inhibitor YHV98-4 reduced intracellular alkalization and ROS production in inflammatory pain, mitigated the imbalance in downstream SHP-1-pAKT signaling, and also diminished pro-inflammatory chemokine release to alleviate nociception and morphine-induced hyperalgesia and tolerance. Thus, our data reveal neuronal Hv1 as a novel target in analgesia strategy and managing opioids-related side effects.


Asunto(s)
Analgésicos Opioides , Dolor , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Animales , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mamíferos , Microglía/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismo
13.
J Mol Cell Biol ; 14(1)2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35022758

RESUMEN

Two-pore domain potassium (K2P) channels gate primarily within the selectivity filter, termed 'C-type' gating. Due to the lack of structural insights into the nonconductive (closed) state, 'C-type' gating mechanisms remain elusive. Here, molecular dynamics (MD) simulations on TREK-1, a K2P channel, revealed that M4 helix movements induce filter closing in a novel 'deeper-down' structure that represents a 'C-type' closed state. The 'down' structure does not represent the closed state as previously proposed and instead acts as an intermediate state in gating. The study identified the allosteric 'seesaw' mechanism of M4 helix movements in modulating filter closing. Finally, guided by this recognition of K2P gating mechanisms, MD simulations revealed that gain-of-function mutations and small-molecule activators activate TREK-1 by perturbing state transitions from open to closed states. Together, we reveal a 'C-type' closed state and provide mechanical insights into gating procedures and allosteric regulations for K2P channels.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Dominio Poro en Tándem , Simulación de Dinámica Molecular , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo
14.
Cancer Lett ; 529: 100-111, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34990752

RESUMEN

The transcription factor B cell lymphoma 6 (BCL6) is an oncogenic driver of diffuse large B cell lymphoma (DLBCL) and mediates lymphomagenesis through transcriptional repression of its target genes by recruiting corepressors to its N-terminal broad-complex/tramtrack/bric-a-brac (BTB) domain. Blocking the protein-protein interactions of BCL6 and its corepressors has been proposed as an effective approach for the treatment of DLBCL. However, BCL6 inhibitors with excellent drug-like properties are rare. Hence, the development of BCL6 inhibitors is worth pursuing. We screened our internal chemical library by luciferase reporter assay and Homogenous Time Resolved Fluorescence (HTRF) assay and a small molecule compound named WK500B was identified. WK500B engaged BCL6 inside cells, blocked BCL6 repression complexes, reactivated BCL6 target genes, killed DLBCL cells and caused apoptosis as well as cell cycle arrest. In animal models, WK500B inhibited germinal center (GC) formation and DLBCL tumour growth without toxic and side effects. Moreover, WK500B displayed strong efficacy and favourable pharmacokinetics and presented superior druggability. Therefore, WK500B is a promising candidate that could be developed as an effective orally available therapeutic agent for DLBCL.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Genes Reporteros , Centro Germinal/efectos de los fármacos , Centro Germinal/inmunología , Centro Germinal/metabolismo , Humanos , Linfoma de Células B Grandes Difuso , Ratones , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cell Res ; 31(1): 52-61, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32884139

RESUMEN

The voltage-gated potassium channel KCNQ2 is responsible for M-current in neurons and is an important drug target to treat epilepsy, pain and several other diseases related to neuronal hyper-excitability. A list of synthetic compounds have been developed to directly activate KCNQ2, yet our knowledge of their activation mechanism is limited, due to lack of high-resolution structures. Here, we report cryo-electron microscopy (cryo-EM) structures of the human KCNQ2 determined in apo state and in complex with two activators, ztz240 or retigabine, which activate KCNQ2 through different mechanisms. The activator-bound structures, along with electrophysiology analysis, reveal that ztz240 binds at the voltage-sensing domain and directly stabilizes it at the activated state, whereas retigabine binds at the pore domain and activates the channel by an allosteric modulation. By accurately defining ligand-binding sites, these KCNQ2 structures not only reveal different ligand recognition and activation mechanisms, but also provide a structural basis for drug optimization and design.


Asunto(s)
Canal de Potasio KCNQ2/metabolismo , Ligandos , Potenciales de Acción/efectos de los fármacos , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacología , Sitios de Unión , Carbamatos/química , Carbamatos/metabolismo , Carbamatos/farmacología , Microscopía por Crioelectrón , Humanos , Canal de Potasio KCNQ2/agonistas , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/genética , Simulación de Dinámica Molecular , Mutagénesis , Fenilendiaminas/química , Fenilendiaminas/metabolismo , Fenilendiaminas/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacología
17.
EMBO Mol Med ; 13(1): e12798, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33283987

RESUMEN

Immune checkpoint blockade (ICB) has a limited effect on colorectal cancer, underlining the requirement of co-targeting the complementary mechanisms. Here, we identified prostaglandin E2 (PGE2 ) receptor 4 (EP4) as the master regulator of immunosuppressive myeloid cells (IMCs), which are the major driver of resistance to ICB therapy. PGE2 -bound EP4 promotes the differentiation of immunosuppressive M2 macrophages and myeloid-derived suppressor cells (MDSCs) and reduces the expansion of immunostimulated M1 macrophages. To explore the immunotherapeutic role of EP4 signaling, we developed a novel and selective EP4 antagonist TP-16. TP-16 effectively blocked the function of IMCs and enhanced cytotoxic T-cell-mediated tumor elimination in vivo. Cell co-culture experiments revealed that TP-16 promoted T-cell proliferation, which was impaired by tumor-derived CD11b+ myeloid cells. Notably, TP-16 and anti-PD-1 combination therapy significantly impeded tumor progression and prolonged mice survival. We further demonstrated that TP-16 increased responsiveness to anti-PD-1 therapy in an IMC-related spontaneous colorectal cancer mouse model. In summary, this study demonstrates that inhibition of EP4-expressing IMCs may offer a potential strategy for enhancing the efficacy of immunotherapy for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Células Supresoras de Origen Mieloide , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Inmunoterapia , Ratones , Células Mieloides , Subtipo EP4 de Receptores de Prostaglandina E
18.
J Med Chem ; 64(1): 385-403, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33382613

RESUMEN

Synthetic cannabinoids, as exemplified by SDB-001 (1), bind to both CB1 and CB2 receptors and exert cannabimimetic effects similar to (-)-trans-Δ9-tetrahydrocannabinol, the main psychoactive component present in the cannabis plant. As CB1 receptor ligands were found to have severe adverse psychiatric effects, increased attention was turned to exploiting the potential therapeutic value of the CB2 receptor. In our efforts to discover novel and selective CB2 receptor agonists, 1 was selected as a starting point for hit molecule identification and a class of 1H-pyrazole-3-carboxamide derivatives were thus designed, synthesized, and biologically evaluated. Systematic structure-activity relationship investigations resulted in the identification of the most promising compound 66 as a selective CB2 receptor agonist with favorable pharmacokinetic profiles. Especially, 66 treatment significantly attenuated dermal inflammation and fibrosis in a bleomycin-induced mouse model of systemic sclerosis, supporting that CB2 receptor agonists might serve as potential therapeutics for treating systemic sclerosis.


Asunto(s)
Drogas de Diseño/química , Descubrimiento de Drogas , Receptor Cannabinoide CB2/agonistas , Esclerodermia Sistémica/tratamiento farmacológico , Drogas de Diseño/farmacocinética , Humanos , Relación Estructura-Actividad
19.
Proc Natl Acad Sci U S A ; 117(52): 33426-33435, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318209

RESUMEN

Precise genetic engineering in specific cell types within an intact organism is intriguing yet challenging, especially in a spatiotemporal manner without the interference caused by chemical inducers. Here we engineered a photoactivatable Dre recombinase based on the identification of an optimal split site and demonstrated that it efficiently regulated transgene expression in mouse tissues spatiotemporally upon blue light illumination. Moreover, through a double-floxed inverted open reading frame strategy, we developed a Cre-activated light-inducible Dre (CALID) system. Taking advantage of well-defined cell-type-specific promoters or a well-established Cre transgenic mouse strain, we demonstrated that the CALID system was able to activate endogenous reporter expression for either bulk or sparse labeling of CaMKIIα-positive excitatory neurons and parvalbumin interneurons in the brain. This flexible and tunable system could be a powerful tool for the dissection and modulation of developmental and genetic complexity in a wide range of biological systems.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Ingeniería Genética , Genoma , Luz , Recombinasas/metabolismo , Animales , Encéfalo/metabolismo , Dependovirus/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Integrasas/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Factores de Tiempo
20.
J Med Chem ; 63(19): 10972-10983, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32877186

RESUMEN

Modulators can be designed to stabilize the inactive and active states of ion channels, but whether intermediate (IM) states of channel gating are druggable remains underexplored. In this study, using molecular dynamics simulations of the TWIK-related potassium channel 1 (TREK-1) channel, a two-pore domain potassium channel, we captured an IM state during the transition from the down (inactive) state to the up (active-like) state. The IM state contained a druggable allosteric pocket that was not present in the down or up state. Drug design targeting the pocket led to the identification of the TKIM compound as an inhibitor of TREK-1. Using integrated methods, we verified that TKIM binds to the pocket of the IM state of TREK-1, which differs from the binding of common inhibitors, which bind to channels in the inactive state. Overall, this study identified an allosteric ligand-binding site and a new mechanistic inhibitor for TREK-1, suggesting that IM states of ion channels may be promising druggable targets for use in discovering allosteric modulators.


Asunto(s)
Diseño de Fármacos , Activación del Canal Iónico/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Sitio Alostérico , Animales , Células CHO , Cricetulus , Humanos , Ligandos , Simulación de Dinámica Molecular , Técnicas de Placa-Clamp , Canales de Potasio de Dominio Poro en Tándem/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...