Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
2.
Sci China Life Sci ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38679669

RESUMEN

Inbreeding depression refers to the reduced performance arising from increased homozygosity, a phenomenon that is the reverse of heterosis and exists among plants and animals. As a natural self-pollinated crop with strong heterosis, the mechanism of inbreeding depression in rice is largely unknown. To understand the genetic basis of inbreeding depression, we constructed a successive inbreeding population from the F2 to F4 generation and observed inbreeding depression of all heterotic traits in the progeny along with the decay of heterozygosity in each generation. The expected depression effect was largely explained by 13 QTLs showing dominant effects for spikelets per panicle, 11 for primary branches, and 12 for secondary branches, and these loci constitute the main correlation between heterosis and inbreeding depression. However, the genetic basis of inbreeding depression is also distinct from that of heterosis, such that a biased transmission ratio of alleles for QTLs with either dominant or additive effects in four segregation distortion regions would result in minor effects in expected depression. Noticeably, two-locus interactions may change the extent and direction of the depression effects of the target loci, and overall interactions would promote inbreeding depression among generations. Using an F2:3 variation population, the actual performance of the loci showing expected depression was evaluated considering the heterozygosity decay in the background after inbreeding. We found inconsistent or various degrees of background depression from the F2 to F3 generation assuming different genotypes of the target locus, which may affect the actual depression effect of the locus due to epistasis. The results suggest that the genetic architecture of inbreeding depression and heterosis is closely linked but also differs in their intrinsic mechanisms, which expand our understanding of the whole-genome architecture of inbreeding depression.

3.
Opt Lett ; 48(18): 4837-4840, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37707915

RESUMEN

The Gaussian-modulated coherent state (GMCS) is a well-known continuous-variable quantum key distribution (CV-QKD) protocol that is robust to incoherent background noise and can effectively suppress ambient light in free space. However, it is difficult to implement this protocol in free space using existing polarization coding schemes. In this Letter, we propose a polarization coding structure based on a self-compensating fiber Sagnac interferometer, which can reduce the required modulation voltage by two orders of magnitude and achieve fast and arbitrary polarization modulation, and experimentally demonstrate polarization coding-based GMCS CV-QKD for, it is believed, the first time. The proposed polarization modulation structure, which uses off-the-shelf fiber components, is compact, simple, and suitable for mobile terminals, such as flying lifts.

4.
Natl Sci Rev ; 10(9): nwad210, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37621414

RESUMEN

Male sterility in plants provides valuable breeding tools in germplasm innovation and hybrid crop production. However, genetic resources for dominant genic male sterility, which hold great promise to facilitate breeding processes, are extremely rare in natural germplasm. Here we characterized the Sanming Dominant Genic Male Sterility in rice and identified the gene SDGMS using a map-based cloning approach. We found that spontaneous movement of a 1978-bp long terminal repeat (LTR) retrotransposon into the promoter region of the SDGMS gene activates its expression in anther tapetum, which causes abnormal programmed cell death of tapetal cells resulting in dominant male sterility. SDGMS encodes a ribosome inactivating protein showing N-glycosidase activity. The activation of SDGMS triggers transcription reprogramming of genes responsive to biotic stress leading to a hypersensitive response which causes sterility. The results demonstrate that an ectopic gene activation by transposon movement can give birth to a novel trait which enriches phenotypic diversity with practical utility.

5.
Nat Genet ; 55(8): 1381-1389, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37500729

RESUMEN

One-step and two-step pathways are proposed to synthesize cytokinin in plants. The one-step pathway is mediated by LONELY GUY (LOG) proteins. However, the enzyme for the two-step pathway remains to be identified. Here, we show that quantitative trait locus GY3 may boost grain yield by more than 20% through manipulating a two-step pathway. Locus GY3 encodes a LOG protein that acts as a 5'-ribonucleotide phosphohydrolase by excessively consuming the cytokinin precursors, which contrasts with the activity of canonical LOG members as phosphoribohydrolases in a one-step pathway. The residue S41 of GY3 is crucial for the dephosphorylation of iPRMP to produce iPR. A solo-LTR insertion within the promoter of GY3 suppressed its expression and resulted in a higher content of active cytokinins in young panicles. Introgression of GY302428 increased grain yield per plot by 7.4% to 16.3% in all investigated indica backgrounds, which demonstrates the great value of GY302428 in indica rice production.


Asunto(s)
Citocininas , Oryza , Citocininas/genética , Citocininas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Sitios de Carácter Cuantitativo/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Nature ; 618(7966): 799-807, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316670

RESUMEN

Plants deploy receptor-like kinases and nucleotide-binding leucine-rich repeat receptors to confer host plant resistance (HPR) to herbivores1. These gene-for-gene interactions between insects and their hosts have been proposed for more than 50 years2. However, the molecular and cellular mechanisms that underlie HPR have been elusive, as the identity and sensing mechanisms of insect avirulence effectors have remained unknown. Here we identify an insect salivary protein perceived by a plant immune receptor. The BPH14-interacting salivary protein (BISP) from the brown planthopper (Nilaparvata lugens Stål) is secreted into rice (Oryza sativa) during feeding. In susceptible plants, BISP targets O. satvia RLCK185 (OsRLCK185; hereafter Os is used to denote O. satvia-related proteins or genes) to suppress basal defences. In resistant plants, the nucleotide-binding leucine-rich repeat receptor BPH14 directly binds BISP to activate HPR. Constitutive activation of Bph14-mediated immunity is detrimental to plant growth and productivity. The fine-tuning of Bph14-mediated HPR is achieved through direct binding of BISP and BPH14 to the selective autophagy cargo receptor OsNBR1, which delivers BISP to OsATG8 for degradation. Autophagy therefore controls BISP levels. In Bph14 plants, autophagy restores cellular homeostasis by downregulating HPR when feeding by brown planthoppers ceases. We identify an insect saliva protein sensed by a plant immune receptor and discover a three-way interaction system that offers opportunities for developing high-yield, insect-resistant crops.


Asunto(s)
Hemípteros , Proteínas de Insectos , Oryza , Defensa de la Planta contra la Herbivoria , Proteínas de Plantas , Animales , Hemípteros/inmunología , Hemípteros/fisiología , Leucina/metabolismo , Nucleótidos/metabolismo , Oryza/crecimiento & desarrollo , Oryza/inmunología , Oryza/metabolismo , Oryza/fisiología , Defensa de la Planta contra la Herbivoria/inmunología , Defensa de la Planta contra la Herbivoria/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Insectos/metabolismo , Autofagia
7.
J Pain Res ; 16: 1225-1241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064957

RESUMEN

Purpose: Urologic chronic pelvic pain syndrome has attracted a lot of attention in the new century, and an increasing number of relevant studies have been published. Therefore, we performed a bibliometric analysis of these publications, hoping to show the current research hotspots and future research trends. Methods: The articles on were selected from the Web of Science Core Collection. Countries, authors, references and keywords in the field were visualized and analyzed using CiteSpace and VOSViewer software. Results: A total of 1014 articles on urologic chronic pelvic pain syndrome were identified, with "chronic pelvic pain syndrome" being the most common keyword, with a strong association with "interstitial cystitis" and "chronic prostatitis". The hotspot of urologic chronic pelvic pain syndrome research has gradually shifted from chronic prostatitis / urologic chronic pelvic pain syndrome to cystitis/bladder pain syndrome over the past few years. Future research tends to focus on urologic chronic pelvic pain syndrome etiology, including oxidative stress and inflammation. Conclusion: Research on urologic chronic pelvic pain syndrome is steadily growing. The United States has made the most prominent contribution in this area, and the share of China's contribution is expected to grow further. The etiology of urologic chronic pelvic pain syndrome, including inflammation and oxidative stress, have been the focus of current research and developmental trends in the future research.

8.
Science ; 379(6638): eade8416, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36952416

RESUMEN

The use of alkaline salt lands for crop production is hindered by a scarcity of knowledge and breeding efforts for plant alkaline tolerance. Through genome association analysis of sorghum, a naturally high-alkaline-tolerant crop, we detected a major locus, Alkaline Tolerance 1 (AT1), specifically related to alkaline-salinity sensitivity. An at1 allele with a carboxyl-terminal truncation increased sensitivity, whereas knockout of AT1 increased tolerance to alkalinity in sorghum, millet, rice, and maize. AT1 encodes an atypical G protein γ subunit that affects the phosphorylation of aquaporins to modulate the distribution of hydrogen peroxide (H2O2). These processes appear to protect plants against oxidative stress by alkali. Designing knockouts of AT1 homologs or selecting its natural nonfunctional alleles could improve crop productivity in sodic lands.


Asunto(s)
Álcalis , Productos Agrícolas , Subunidades gamma de la Proteína de Unión al GTP , Proteínas de Plantas , Tolerancia a la Sal , Sorghum , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Peróxido de Hidrógeno/metabolismo , Oryza/genética , Oryza/fisiología , Estrés Oxidativo/genética , Fitomejoramiento , Salinidad , Álcalis/análisis , Álcalis/toxicidad , Bicarbonato de Sodio/análisis , Bicarbonato de Sodio/toxicidad , Carbonatos/análisis , Carbonatos/toxicidad , Tolerancia a la Sal/genética , Sorghum/genética , Sorghum/fisiología , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Acuaporinas/metabolismo , Producción de Cultivos , Sitios Genéticos , Suelo/química
9.
Mol Plant ; 16(4): 726-738, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36843324

RESUMEN

Hybrid rice has made considerable contributions to achieve the ambitious goal of food security for the world's population. Hybrid rice from indica/xian and japonica/geng subspecies shows much higher heterosis and is thereby an important innovation in promoting rice production in the next decade. However, such inter-subspecific hybrid rice has long suffered from serious hybrid sterility, which is a major challenge that needs to be addressed. In this study, we performed a genome design strategy to produce fertile inter-subspecific hybrid by creation of wide compatibility varieties that are able to overcome hybrid sterility. Based on combined genetic analyses in two indica-japonica crosses, we determined that four hybrid sterility loci, S5, f5, pf12 and Sc, are the major QTLs controlling inter-subspecific hybrid sterility and thus the minimal targets that can be manipulated for breeding sub-specific hybrid rice. We then cloned the pf12 locus, one of the most effective loci for hybrid male sterility, by map-based cloning, and showed that artificial disruption of pf12A gene at this locus could successfully rescue hybrid fertility. We further dissected the genetic basis of wide compatibility using three pairwise crosses from a wide-compatibility variety Dular and representative indica and japonica varieties. On this basis, we constructed and assembled different combinations of naturally compatible alleles of four loci, S5, Sc, pf12, and f5, and found that the improved lines could fully recover pollen and embryo sac fertility in test-crossed F1s, thereby completely fulfilling the demands of inter-subspecific hybrid spikelet fertility in agricultural production. This breeding scheme would facilitate redesign of future inter-subspecific hybrid rice with a higher yield potential.


Asunto(s)
Infertilidad , Oryza , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Fertilidad/genética , Infertilidad/genética
11.
Plant J ; 112(1): 68-83, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35912411

RESUMEN

Heterosis refers to the superior performance of hybrids over their parents, which is a general phenomenon occurring in diverse organisms. Many commercial hybrids produce high yield without delayed flowering, which we refer to as optimal heterosis and is desired in hybrid breeding. Here, we attempted to illustrate the genomic basis of optimal heterosis by reinvestigating the single-locus quantitative trait loci and digenic interactions of two traits, the number of spikelets per panicle (SP) and heading date (HD), using recombinant inbred lines and 'immortalized F2 s' derived from the elite rice (Oryza sativa) hybrid Shanyou 63. Our analysis revealed a regulatory network that may provide an approximation to the genetic constitution of the optimal heterosis observed in this hybrid. In this network, Ghd7 works as the core element, and three other genes, Ghd7.1, Hd1, and Hd3a/RFT1, also have major roles. The effects of positive dominance by Ghd7 and Ghd7.1 and negative dominance by Hd1 and Hd3a/RFT1 in the hybrid background contribute the major part to the high SP without delaying HD; numerous epistatic interactions, most of which involve Ghd7, also play important roles collectively. The results expand our understanding of the genic interaction networks underlying hybrid rice breeding programs, which may be very useful in future crop genetic improvement.


Asunto(s)
Vigor Híbrido , Oryza , Vigor Híbrido/genética , Oryza/genética , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
12.
Proc Natl Acad Sci U S A ; 119(34): e2208759119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969741

RESUMEN

Cytoplasmic male sterility (CMS) determined by mitochondrial genes and restorer of fertility (Rf) controlled by nuclear-encoded genes provide the breeding systems of many hybrid crops for the utilization of heterosis. Although several CMS/Rf systems have been widely exploited in rice, hybrid breeding using these systems has encountered difficulties due to either fertility instability or complications of two-locus inheritance or both. In this work, we characterized a type of CMS, Fujian Abortive cytoplasmic male sterility (CMS-FA), with stable sporophytic male sterility and a nuclear restorer gene that completely restores hybrid fertility. CMS is caused by the chimeric open reading frame FA182 that specifically occurs in the mitochondrial genome of CMS-FA rice. The restorer gene OsRf19 encodes a pentatricopeptide repeat (PPR) protein targeted to mitochondria, where it mediates the cleavage of FA182 transcripts, thus restoring male fertility. Comparative sequence analysis revealed that OsRf19 originated through a recent duplication in wild rice relatives, sharing a common ancestor with OsRf1a/OsRf5, a fertility restorer gene for Boro II and Hong-Lian CMS. We developed six restorer lines by introgressing OsRf19 into parental lines of elite CMS-WA hybrids; hybrids produced from these lines showed equivalent or better agronomic performance relative to their counterparts based on the CMS-WA system. These results demonstrate that CMS-FA/OsRf19 provides a highly promising system for future hybrid rice breeding.


Asunto(s)
Oryza , Infertilidad Vegetal , Hibridación Genética , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/metabolismo
13.
Gland Surg ; 11(6): 1078-1085, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35800736

RESUMEN

Background: This study systematically reviewed the effects of continuous nursing intervention on intraoperative pressure ulcers (PUs) and related complications in breast cancer patients. The effectiveness of continuous nursing intervention for intraoperative pressure ulcers related complications in breast cancer patients is highly controversial. Therefore, it is necessary to systematically review and address this issue by means of meta-analysis. Methods: By searching the Cochrane Library, PubMed, Web of Science, Embase, and Chinese Biomedical Literature Database (CBM) were screened. Quality evaluation and data extraction were performed for the included studies, and meta-analysis was performed for the included RCTs using Review Manager 5.2 software. Literature was included in strict compliance with the PICOS principle, and bias risk was analyzed by t-test and funnel plot. Results: A total of 1,431 patients were enrolled in 9 studies, and meta-analysis showed that there was a significant statistical difference between the experimental group and the control group in the incidence of PUs [odds ratio (OR) =0.18, 95% confidence interval (95% CI): 0.13-0.24, P<0.00001], the Braden pressure ulcer risk score after nursing [mean difference (MD) =2.64, 95% CI: 1.47-3.81, P<0.0001], and the quality of life after nursing (MD =9.76, 95% CI: 6.82-12.69, P<0.00001). Discussion: Continuous care can reduce the incidence of PUs in patients with advanced breast cancer, reduce the severity of wounds in the healing process of PUs, and improve the knowledge of PUs in patients with advanced breast cancer risk.

14.
J Genet Genomics ; 49(5): 385-393, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276387

RESUMEN

The wide adoption of hybrid rice has greatly increased rice yield in the last several decades. The utilization of heterosis facilitated by male sterility has been a common strategy for hybrid rice development. Here, we summarize our efforts in the genetic and molecular understanding of heterosis and male sterility together with the related progress from other research groups. Analyses of F1 diallel crosses show that strong heterosis widely exists in hybrids of diverse germplasms, and inter-subspecific hybrids often display higher heterosis. Using the elite hybrid Shanyou 63 as a model, an immortalized F2 population design is conducted for systematic characterization of the biological mechanism of heterosis, with identification of loci controlling heterosis of yield and yield component traits. Dominance, overdominance, and epistasis all play important roles in the genetic basis of heterosis; quantitative assessment of these components well addressed the three classical genetic hypotheses for heterosis. Environment-sensitive genic male sterility (EGMS) enables the development of two-line hybrids, and long noncoding RNAs often function as regulators of EGMS. Inter-subspecific hybrids show greatly reduced fertility; the identification and molecular characterization of hybrid sterility genes offer strategies for overcoming inter-subspecific hybrid sterility. These developments have significant implications for future hybrid rice improvement using genomic breeding.


Asunto(s)
Infertilidad Masculina , Oryza , Cruzamientos Genéticos , Genoma , Humanos , Vigor Híbrido/genética , Masculino , Oryza/genética , Fitomejoramiento
15.
Mol Plant ; 15(1): 9-26, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34883279

RESUMEN

Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge. Here, we review the concept and practices of Green Super Rice (GSR) that have led to a paradigm shift in goals for crop genetic improvement and models of food production for promoting sustainable agriculture. The momentous achievements and global deliveries of GSR have been fueled by the integration of abundant genetic resources, functional gene discoveries, and innovative breeding techniques with precise gene and whole-genome selection and efficient agronomic management to promote resource-saving, environmentally friendly crop production systems. We also provide perspectives on new horizons in genomic breeding technologies geared toward delivering green and nutritious crop varieties to further enhance the development of green agriculture and better nourish the world population.


Asunto(s)
Agricultura/métodos , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Oryza/crecimiento & desarrollo , Oryza/genética , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo
16.
Biomacromolecules ; 23(2): 530-542, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-34965723

RESUMEN

Ice formation and recrystallization exert severe impairments to cellular cryopreservation. In light of cell-damaging washing procedures in the current glycerol approach, many researches have been devoted to the development of biocompatible cryoprotectants for optimal bioprotection of human erythrocytes. Herein, we develop a novel ACTIVE glycopeptide of saccharide-grafted ε-poly(L-lysine), that can be credited with adsorption on membrane surfaces, cryopreservation with trehalose, and icephilicity for validity of human erythrocytes. Then, by Borch reductive amination or amidation, glucose, lactose, maltose, maltotriose, or trehalose was tethered to ε-polylysine. The synthesized ACTIVE glycopeptides with intrinsic icephilicity could localize on the membrane surface of human erythrocytes and improve cryopreservation with trehalose, so that remarkable post-thaw cryosurvival of human erythrocytes was achieved with a slight variation in cell morphology and functions. Human erythrocytes (∼50% hematocrit) in cryostores could maintain high cryosurvival above 74%, even after plunged in liquid nitrogen for 6 months. Analyses of differential scanning calorimetry, Raman spectroscopy, and dynamic ice shaping suggested that this cryopreservation protocol combined with the ACTIVE glycopeptide and trehalose could enhance the hydrogen bond network in nonfrozen solutions, resulting in inhibition of recrystallization and growth of ice. Therefore, the ACTIVE glycopeptide can be applied as a trehalose-associated "chaperone", providing a new way to serve as a candidate in glycerol-free human erythrocyte cryopreservation.


Asunto(s)
Hielo , Trehalosa , Supervivencia Celular , Criopreservación/métodos , Crioprotectores/farmacología , Eritrocitos , Glicerol/farmacología , Glicopéptidos/farmacología , Humanos , Trehalosa/farmacología
17.
Opt Lett ; 46(24): 6099-6102, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913926

RESUMEN

The demand for the integration of quantum key distribution (QKD) and classical optical communication in the same optical fiber medium greatly increases as fiber resources and the flexibility of practical applications are taken into consideration. To satisfy the needs of the mass deployment of ultra-high power required for classical optical networks integrating QKD, we implement the discrete variable quantum key distribution (DV-QKD) under up to 25 dBm launch power from classical channels over 75 km on an ultra-low-loss (ULL) fiber by combining a finite-key security analysis method with the noise model of classical signals. To the best of our knowledge, this is the highest power launched by classical signals on the coexistence of DV-QKD and classical communication. The results exhibit the feasibility and tolerance of our QKD system for use in ultra-high-power classical communications.

18.
Mol Plant ; 14(10): 1699-1713, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34216830

RESUMEN

G-protein signaling and ubiquitin-dependent degradation are both involved in grain development in rice, but how these pathways are coordinated in regulating this process is unknown. Here, we show that Chang Li Geng 1 (CLG1), which encodes an E3 ligase, regulates grain size by targeting the Gγ protein GS3, a negative regulator of grain length, for degradation. Overexpression of CLG1 led to increased grain length, while overexpression of mutated CLG1 with changes in three conserved amino acids decreased grain length. We found that CLG1 physically interacts with and ubiquitinats GS3which is subsequently degraded through the endosome degradation pathway, leading to increased grain size. Furthermore, we identified a critical SNP in the exon 3 of CLG1 that is significantly associated with grain size variation in a core collection of cultivated rice. This SNP results in an amino acid substitution from Arg to Ser at position 163 of CLG1 that enhances the E3 ligase activity of CLG1 and thus increases rice grain size. Both the expression level of CLG1 and the SNP CLG1163S may be useful variations for manipulating grain size in rice.


Asunto(s)
Endosomas/metabolismo , Proteínas de Unión al GTP/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Grano Comestible , Mutación con Ganancia de Función , Oryza/anatomía & histología , Oryza/enzimología , Oryza/genética , Proteínas de Plantas/genética , Proteolisis , Ubiquitina-Proteína Ligasas/genética
19.
J Exp Bot ; 72(20): 6963-6976, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34283218

RESUMEN

Heterosis of grain yield is closely associated with heading date in crops. Gene combinations of the major heading date genes Ghd7, Ghd8, and Hd1 play important roles in enhancing grain yield and adaptation to ecological regions in rice. However, the predominant three-gene combinations for a specific ecological region remain unclear in both three-line and two-line hybrids. In this study, we sequenced these three genes of 50 cytoplasmic male sterile/maintainer lines, 31 photo-thermo-sensitive genic male sterile lines, and 109 restorer lines. Sequence analysis showed that hybrids carrying strong functional alleles of Ghd7 and Hd1 and non-functional Ghd8 are predominant in three-line hybrids and are recommended for rice production in the subtropics around 30°N/S. Hybrids carrying strong functional Ghd7 and Ghd8 and non-functional Hd1 are predominant in two-line hybrids and are recommended for low latitude areas around 23.5°N/S rich in photothermal resources. Hybrids carrying strong functional Ghd7 and Ghd8 and functional Hd1 were not identified in commercial hybrids in the middle and lower reaches of the Yangtze River, but they have high yield potential in tropical regions because they have the strongest photoperiod sensitivity. Based on these findings, two genic sterile lines, Xiangling 628S and C815S, whose hybrids often head very late, were diagnosed with these three genes, and Hd1 was targeted to be knocked out in Xiangling 628S and replaced with hd1 in C815S. The hybrids developed from both modified sterile lines in turn had appropriate heading dates and significantly improved grain yield. This study provides new insights for breeding design to develop hybrids for various regions.


Asunto(s)
Oryza , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Vigor Híbrido/genética , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Opt Lett ; 46(11): 2573-2576, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061059

RESUMEN

There is an increasing demand for multiplexing of quantum key distribution with optical communications in single fiber in consideration of high costs and practical applications in the metropolitan optical network. Here, we realize the integration of quantum key distribution and an optical transport network of 80 Gbps classical data at 15 dBm launch power over 50 km of the widely used standard (G.652 Recommendation of the International Telecom Union Telecom Standardization Sector) telecom fiber. A secure key rate of 11 Kbps over 20 km is obtained. By tolerating a high classical optical power up to 18 dBm of 160 Gbps classical data on single-mode fiber, our result shows the potential and tolerance of quantum key distribution being used in future large capacity transmission systems, such as metropolitan area networks and data centers. The quantum key distribution system is stable, practical, and insensitive to the polarization disturbance of channels by using a phase coding system based on a Faraday-Michelson interferometer. We also discuss the fundamental limit for quantum key distribution performance in the multiplexing environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...