Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(23): 15003-15012, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38816680

RESUMEN

Residual stress in metal halide perovskite films intimately affects the photovoltaic figure of merit and longevity of perovskite solar cells. A delicate management of the crystallization kinetics is critical to the preparation of high-quality perovskite films. Only very limited methods, however, are available to regulate the residual stress of a perovskite film in a controllable manner, particularly for a perovskite film fabricated by a two-step method. Here, we demonstrate the construction of a hierarchical PbI2 scaffold inspired by Archaeoprepona demophon butterfly by combining an interlayer guided growth of porous structure and nanoimprinting. The hierarchically structured PbI2 that emulates the physical structure of the butterfly wing scale permits unimpeded permeation of organic amine salts and sufficient space for volume expansion during the crystallization process, accompanied by preferential perovskite growth of a defectless (001) crystal plane. The optimized perovskite film outperforms the control with reduced residual stress and defect density. Consequently, perovskite solar cells with a respectable power conversion efficiency reaching 23.4% (certified 23%) and an impressive open-circuit voltage of 1.184 V can be achieved. The target device can maintain 80% of initial efficiency after maximum power point tracking under illumination for 700 h. This work expands the range of engineering toward PbI2 by exploring a simultaneously tailored morphology and crystallinity and highlights the significance of a hierarchical PbI2 scaffold as an alternative choice to mitigate residual stress in a two-step processed perovskite active layer and boost the longevity of perovskite solar cells.

2.
Front Public Health ; 8: 567621, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072702

RESUMEN

A novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing Coronavirus Disease 2019 (COVID-19) pandemic. In this study, we performed a comprehensive epidemiological and genomic analysis of SARS-CoV-2 genomes from 10 patients in Shaoxing (Zhejiang Province), a mid-sized city outside of the epicenter Hubei province, China, during the early stage of the outbreak (late January to early February, 2020). We obtained viral genomes with >99% coverage and a mean depth of 296X demonstrating that viral genomic analysis is feasible via metagenomics sequencing directly on nasopharyngeal samples with SARS-CoV-2 Real-time PCR Ct values <28. We found that a cluster of four patients with travel history to Hubei shared the exact same virus with patients from Wuhan, Taiwan, Belgium, and Australia, highlighting how quickly this virus spread to the globe. The virus from another cluster of two family members living together without travel history but with a sick contact of a confirmed case from another city outside of Hubei accumulated significantly more mutations (9 SNPs vs. average 4 SNPs), suggesting a complex and dynamic nature of this outbreak. Our findings add to the growing knowledge of the epidemiological and genomic characteristics of SARS-CoV-2 and offers a glimpse into the early phase of this viral infection outside of Hubei, China.


Asunto(s)
COVID-19 , SARS-CoV-2 , Australia , Bélgica , China/epidemiología , Brotes de Enfermedades , Genómica , Humanos , Taiwán
3.
APMIS ; 127(4): 202-216, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30908774

RESUMEN

Leptospirosis is a zoonotic disease caused by pathogenic Leptospira. However, understanding of the pathogenic mechanism of Leptospira is still elusive due to the limited number of genetic tools available for this microorganism. Currently, the reason for the genetic inaccessibility of Leptospira is still unknown. It is well known that as an acquired immunity of bacteria, Clustered Regularly Interspaced Short Palindromic Repeat-CRISPR-associated gene (CRISPR-Cas) systems can help bacteria against invading mobile genetic elements. In this study, the occurrence and diversity of CRISPR-Cas systems in 41 genomes of Leptospira strains were investigated. Three subtypes (subtype I-B, subtype I-C and subtype I-E) of CRISPR-Cas systems were identified in both pathogenic and intermediate Leptospira species but not in saprophytic species. Noteworthy, the majority of pathogenic species harbor two different types of CRISPR-Cas systems (subtype I-B and subtype I-E). Furthermore, Cas2 protein of subtype I-C in L. interrogans exhibited a metal-dependent DNase activity in a nonspecific manner. CRISPR spacers in subtype I-B are highly conserved within the same serovars and hypervariable across different serovars of L. interrogans. Based on the subtype I-B CRISPR arrays, the serotypes of different L. interrogans strains were easily identified. Investigation of the origin of CRISPR spacers showed that 192 spacers (23.5%) matched to mobile genetic elements, indicating CRISPR-Cas systems may play an important role in the defense of foreign invading DNA.


Asunto(s)
Sistemas CRISPR-Cas , Variación Genética , Genotipo , Técnicas de Genotipaje/métodos , Leptospira interrogans/clasificación , Leptospira interrogans/genética , Genoma Bacteriano , Leptospira interrogans/enzimología
4.
Cell Microbiol ; 21(1): e12959, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30278102

RESUMEN

Leptospira interrogans causes widespread leptospirosis in humans and animals, with major symptoms of jaundice and haemorrhage. Sph2, a member of the sphingomyelinase haemolysins, is an important virulence factor for leptospire. In this study, the function and mechanism of Sph2 in the pathogenesis of leptospirosis were investigated to further understand the pathogenesis of leptospire. Real-time PCR analysis of expression levels during cell invasion showed that sph2 gene expression was transiently induced in human umbilical vein endothelial cells (HUVECs), human embryo liver cells (L02), and human epithelial lung cells (L132), with expression levels reaching a peak after 45 min of infection. Further functional analysis of recombinant Sph2 (rSph2) by LDH assays and confocal microscopy showed that rSph2 can be internalised by cells both by causing cell membrane damage and by a damage-independent clathrin-mediated endocytosis pathway. Subsequently, rSph2 is able to translocate to mitochondria, which led to an increase in the levels of reactive oxygen species (ROS) and a decrease of the mitochondrial membrane potential (ΔΨm ). Further flowcytometry analyses after rSph2 exposure showed that 28.7%, 31%, and 27.3% of the HUVEC, L02, and L132 cells, respectively, became apoptotic. Because apoptosis could be decreased with the ROS inhibitor N-acetyl cysteine, these experiments suggested that rSph2 triggers apoptosis through mitochondrial membrane damage and ROS elevation. The ability of leptospiral haemolysin rSph2 to cause apoptosis likely contributes to the pathogenesis of leptospirosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Hemolisinas/metabolismo , Leptospira interrogans/patogenicidad , Membranas Mitocondriales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factores de Virulencia/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Endocitosis , Humanos , Leptospira interrogans/crecimiento & desarrollo , Transporte de Proteínas
5.
Front Microbiol ; 9: 764, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755425

RESUMEN

Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira species. The most common species, Leptospira interrogans, can transfer from contaminated soil or water to the human body. It is able to survive these changing environments through sensing and responding to the changes of environmental cues. Cyclic di-GMP (c-di-GMP) is a special secondary messenger in bacteria, which can respond to the environment and regulate diverse bacterial behaviors. The c-di-GMP levels in bacterial cells are regulated by diguanylatecyclases (DGC) and phosphodiesterases (PDE), which are responsible for synthesizing or hydrolyzing c-di-GMP, respectively. In this study, distribution and phylogenetics of c-di-GMP metabolic genes among 15 leptospiral species were systematically analyzed. Bioinformatics analysis revealed that leptospiral species contain a multitude of c-di-GMP metabolic genes. C-di-GMP metabolic genes in L. interrogans strain Lai 56601 were further analyzed and the results showed that these genes have very diverse expression patterns. Most of the putative DGCs and PDEs possess enzymatic activities, as determined by riboswitch-based dual-fluorescence reporters in vivo or HPLC in vitro. Furtherer analysis of subdomains from GGDEF-containing proteins revealed that the ability to synthesize c-di-GMP was lost when the GAF domain from LA1483 and PAS domain from LA2932 were deleted, while deletion of the REC domain from LA2528 did not affect its ability to synthesize c-di-GMP. Furthermore, high temperatures generally resulted in low c-di-GMP concentrations in L. interrogans and most of the c-di-GMP metabolic genes exhibited differential temperature regulation. Also, infection of murine J774A.1 cells resulted in reduced c-di-GMP levels, while no significant change of c-di-GMP metabolic genes on transcriptional levels were observed during the infection of J774A.1 cells. Taken together, these results provide a basic platform for future studies of c-di-GMP signaling pathways in Leptospira.

6.
Biomed Mater Eng ; 26 Suppl 1: S665-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26406062

RESUMEN

Aiming at the hand rehabilitation of stroke patients, a wearable hand exoskeleton with circuitous joint is proposed. The circuitous joint adopts the symmetric pinion and rack mechanism (SPRM) with the parallel mechanism. The exoskeleton finger is a serial mechanism composed of three closed-chain SPRM joints in series. The kinematic equations of the open chain of the finger and the closed chains of the SPRM joints were built to analyze the kinematics of the hand rehabilitation exoskeleton. The experimental setup of the hand rehabilitation exoskeleton was built and the continuous passive motion (CPM) rehabilitation experiment and the test of human-robot interaction force measurement were conducted. Experiment results show that the mechanical design of the hand rehabilitation robot is reasonable and that the kinematic analysis is correct, thus the exoskeleton can be used for the hand rehabilitation of stroke patients.


Asunto(s)
Dispositivo Exoesqueleto , Mano/fisiopatología , Modelos Biológicos , Terapia Pasiva Continua de Movimiento/instrumentación , Rango del Movimiento Articular , Robótica/instrumentación , Fenómenos Biomecánicos , Simulación por Computador , Diseño Asistido por Computadora , Análisis de Falla de Equipo , Humanos , Sistemas Hombre-Máquina , Terapia Pasiva Continua de Movimiento/métodos , Diseño de Prótesis , Estrés Mecánico , Terapia Asistida por Computador/instrumentación , Terapia Asistida por Computador/métodos
7.
Sensors (Basel) ; 12(12): 17128-54, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23235451

RESUMEN

The reliability of wireless sensor networks (WSNs) can be greatly affected by failures of sensor nodes due to energy exhaustion or the influence of brutal external environment conditions. Such failures seriously affect the data persistence and collection efficiency. Strategies based on network coding technology for WSNs such as LTCDS can improve the data persistence without mass redundancy. However, due to the bad intermediate performance of LTCDS, a serious 'cliff effect' may appear during the decoding period, and source data are hard to recover from sink nodes before sufficient encoded packets are collected. In this paper, the influence of coding degree distribution strategy on the 'cliff effect' is observed and the prioritized data storage and dissemination algorithm PLTD-ALPHA is presented to achieve better data persistence and recovering performance. With PLTD-ALPHA, the data in sensor network nodes present a trend that their degree distribution increases along with the degree level predefined, and the persistent data packets can be submitted to the sink node according to its degree in order. Finally, the performance of PLTD-ALPHA is evaluated and experiment results show that PLTD-ALPHA can greatly improve the data collection performance and decoding efficiency, while data persistence is not notably affected.


Asunto(s)
Redes de Comunicación de Computadores/instrumentación , Almacenamiento y Recuperación de la Información , Tecnología Inalámbrica , Algoritmos , Humanos , Telemetría/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...