Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Am J Chin Med ; 52(3): 885-904, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716619

RESUMEN

Polyphyllin VII is a biologically active herbal monomer extracted from the traditional Chinese herbal medicine Chonglou. Many studies have demonstrated the anticancer activity of polyphyllin VII against various types of cancers, such as colon, liver, and lung cancer, but its effect on breast cancer has not been elucidated. In this study, we demonstrate that polyphyllin VII inhibited proliferation, increased production of intracellular reactive oxygen species, and decreased mitochondrial membrane potential in breast cancer cells. Notably, polyphyllin VII also induced apoptosis via the mitochondrial pathway. Transcriptome sequencing was used to analyze the targets of PPVII in regulating breast cancer cells. Mechanistic studies showed that polyphyllin VII downregulated Son of Sevenless1 (SOS1) and inhibited the MAPK/ERK pathway. Furthermore, PPVII exerted strong antitumor effects in vivo in nude mice injected with breast cancer cells. Our results suggest that PPVII may promote apoptosis through regulating the SOS1/MAPK/ERK pathway, making it a possible candidate target for the treatment of breast cancer.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Regulación hacia Abajo , Sistema de Señalización de MAP Quinasas , Proteína SOS1 , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Animales , Humanos , Femenino , Regulación hacia Abajo/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína SOS1/metabolismo , Proteína SOS1/genética , Ratones Desnudos , Saponinas/farmacología , Saponinas/uso terapéutico , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones , Línea Celular Tumoral , Medicamentos Herbarios Chinos/farmacología , Fitoterapia , Antineoplásicos Fitogénicos/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C
2.
Cancer Biol Ther ; 25(1): 2302413, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38356266

RESUMEN

The antipsychotic drug pimozide has been demonstrated to inhibit cancer. However, the precise anti-cancer mechanism of pimozide remains unclear. The purpose of this study was to investigate the effects of pimozide on human MCF-7 and MDA-MB-231 breast cancer cell lines, and the potential involvement in the RAF/ERK signaling. The effects of pimozide on cells were examined by 4,5-dimethylthiazol-2-yl-3,5-diphenylformazan, wound healing, colony formation, transwell assays, and caspase activity assay. Flow cytometry and acridine orange and ethidium bromide staining were performed to assess changes in cells. Transmission electron microscopy and monodansylcadaverine staining were used to observe autophagosomes. The cyclic adenosine monophosphate was evaluated using the FRET system. Immunohistochemistry, immunofluorescence, RNA interference, and western blot investigated the expression of proteins. Mechanistically, we focus on the RAF1/ERK signaling. We detected pimozide was docked to RAF1 by Schrodinger software. Pimozide down-regulated the phosphorylation of RAF1, ERK 1/2, Bcl-2, and Bcl-xl, up-regulated Bax, and cleaved caspase-9 to induce apoptosis. Pimozide might promote autophagy by up-regulating cAMP. The enhancement of autophagy increased the conversion of LC3-I to LC3-II and down-regulated p62 expression. But mTOR signaling was not involved in promoting autophagy. The knockdown of RAF1 expression induced autophagy and apoptosis in breast cancer cells, consistent with the results of pimozide or sorafenib alone. Blocked autophagy by chloroquine resulted in the impairment of pimozide-induced apoptosis. These data showed that pimozide inhibits breast cancer by regulating the RAF/ERK signaling pathway and might activate cAMP-induced autophagy to promote apoptosis and it may be a potential drug for breast cancer treatment.


Asunto(s)
Antipsicóticos , Neoplasias de la Mama , Humanos , Femenino , Sistema de Señalización de MAP Quinasas , Neoplasias de la Mama/tratamiento farmacológico , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Pimozida/farmacología , Proliferación Celular , Apoptosis , Autofagia , Línea Celular Tumoral
4.
Front Pharmacol ; 14: 1265825, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849728

RESUMEN

Ulcerative colitis (UC) is a clinically common, progressive, devastating, chronic inflammatory disease of the intestine that is recurrent and difficult to treat. Nod-like receptor protein 3 (NLRP3) is a protein complex composed of multiple proteins whose formation activates cysteine aspartate protease-1 (caspase-1) to induce the maturation and secretion of inflammatory mediators such as interleukin (IL)-1ß and IL-18, promoting the development of inflammatory responses. Recent studies have shown that NLRP3 is associated with UC susceptibility, and that it maintains a stable intestinal environment by responding to a wide range of pathogenic microorganisms. The mainstay of treatment for UC is to control inflammation and relieve symptoms. Despite a certain curative effect, there are problems such as easy recurrence after drug withdrawal and many side effects associated with long-term medication. NLRP3 serves as a core link in the inflammatory response. If the relationship between NLRP3 and gut microbes and inflammation-associated factors can be analyzed concerning its related inflammatory signaling pathways, its expression status as well as specific mechanism in the course of IBD can be elucidated and further considered for clinical diagnosis and treatment of IBD, it is expected that the development of lead compounds targeting the NLRP3 inflammasome can be developed for the treatment of IBD. Research into the prevention and treatment of UC, which has become a hotbed of research in recent years, has shown that natural products are rich in therapeutic means, and multi-targets, with fewer adverse effects. Natural products have shown promise in treating UC in numerous basic and clinical trials over the past few years. This paper describes the regulatory role of the NLRP3 inflammasome in UC and the mechanism of recent natural products targeting NLRP3 against UC, which provides a reference for the clinical treatment of this disease.

5.
Molecules ; 28(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37764474

RESUMEN

In this paper, the anti-cancer activity and molecular mechanisms of the isomers of AD-1 and AD-2 (20(R)-AD-1, 20(R)-AD-2, 20(S)-AD-1 and 20(S)-AD-2) were investigated. The results indicated that all of the four compounds obviously suppressed the viability of various cancer cells, and the anti-cancer activity of 20(R)-AD-1 and 20(R)-AD-2 was significantly better than 20(S)-AD-1 and 20(S)-AD-2, especially for gastric cancer cells (BGC-803). Then, the differences in the anti-cancer mechanisms of the isomers were investigated. The data showed that 20(R)-AD-1 and 20(R)-AD-2 induced apoptosis and decreased MMP, up-regulated the expression of cytochrome C in cytosol, transferred Bax to the mitochondria, suppressed oxidative phosphorylation and glycolysis and stimulated reactive oxygen species (ROS) production. Apoptosis can be attenuated by the reactive oxygen species scavenger N-acetylcysteine. However, 20(S)-AD-1 and 20(S)-AD-2 barely exhibited the same results. The results indicated that 20(R)-AD-1 and 20(R)-AD-2 suppressed cellular energy metabolism and caused apoptosis through the mitochondrial pathway, which ROS generation was probably involved in. Above all, the data support the development of 20(R)-AD-1 and 20(R)-AD-2 as potential agents for human gastric carcinoma therapy.

6.
Biomed Pharmacother ; 165: 114893, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37352702

RESUMEN

Gut microbes constitute the main microbiota in the human body, which can regulate biological processes such as immunity, cell proliferation, and differentiation, hence playing a specific function in intestinal diseases. In recent years, gut microbes have become a research hotspot in the pharmaceutical field. Because of their enormous number, diversity, and functional complexity, gut microbes have essential functions in the development of many digestive diseases. Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease with a complex etiology, the exact cause and pathogenesis are unclear. There are no medicines that can cure IBD, and more research on therapeutic drugs is urgently needed. It has been reported that gut microbes play a critical role in pathogenesis, and there is a tight and complex association between gut microbes and IBD. The dysregulation of gut microbes may be a predisposing factor for IBD, and at the same time, IBD may exacerbate gut microbes' disorders, but the mechanism of interaction between the two is still not well defined. The study of the relationship between gut microbes and IBD is not only important to elucidate the pathogenesis but also has a positive effect on the treatment based on the regimen of regulating gut microbes. This review describes the latest research progress on the functions of gut microbes and their relationship with IBD, which can provide reference and assistance for further research. It may provide a theoretical basis for the application of probiotics, fecal microbiota transplantation, and other therapeutic methods to regulate gut microbes in IBD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Microbiota , Probióticos , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Probióticos/uso terapéutico , Trasplante de Microbiota Fecal
7.
Eur J Pharmacol ; 954: 175834, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37329970

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by fatty lesions and fat accumulation in hepatic parenchymal cells, which is in the absence of excessive alcohol consumption or definite liver damage factors. The exact pathogenesis of NAFLD is not fully understood, but it is now recognized that oxidative stress, insulin resistance, and inflammation are essential mechanisms involved in the development and treatment of NAFLD. NAFLD therapy aims to stop, delay or reverse disease progressions, as well as improve the quality of life and clinical outcomes of patients with NAFLD. Gasotransmitters are produced by enzymatic reactions, regulated through metabolic pathways in vivo, which can freely penetrate cell membranes with specific physiological functions and targets. Three gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide have been discovered. Gasotransmitters exhibit the effects of anti-inflammatory, anti-oxidant, vasodilatory, and cardioprotective agents. Gasotransmitters and their donors can be used as new gas-derived drugs and provide new approaches to the clinical treatment of NAFLD. Gasotransmitters can modulate inflammation, oxidative stress, and numerous signaling pathways to protect against NAFLD. In this paper, we mainly review the status of gasotransmitters research on NAFLD. It provides clinical applications for the future use of exogenous and endogenous gasotransmitters for the treatment of NAFLD.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Enfermedad del Hígado Graso no Alcohólico , Humanos , Gasotransmisores/uso terapéutico , Gasotransmisores/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Calidad de Vida , Sulfuro de Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/metabolismo , Antioxidantes , Inflamación/patología , Hígado/metabolismo
8.
Cytotherapy ; 25(6): 561-572, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36642683

RESUMEN

Inflammation is the result of acute and chronic stresses, caused by emotional or physical trauma, or nutritional or environmental pollutants, and brings serious harm to human life and health. As an important cellular component of the innate immune barrier, the macrophage plays a key role in maintaining tissue homeostasis and promoting tissue repair by controlling infection and resolving inflammation. Several studies suggest that V Set and Ig domain-containing 4 is specifically expressed in tissue macrophages and is associated with a variety of inflammatory diseases. In this paper, we mainly summarize the recent research on V Set and Ig domain-containing 4 structures, functions, function and roles in acute and chronic inflammatory diseases, and provide a novel therapeutic avenue for the treatment of inflammatory diseases, including nervous system, urinary, respiratory and metabolic diseases.


Asunto(s)
Macrófagos , Receptores de Complemento , Animales , Ratones , Humanos , Receptores de Complemento/metabolismo , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Inflamación/terapia , Inflamación/metabolismo , Dominios de Inmunoglobulinas
9.
Biomed Pharmacother ; 158: 114086, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36502751

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that presents clinically with abdominal pain, mucopurulent stools, and posterior urgency. The lesions of UC are mainly concentrated in the rectal and colonic mucosa and submucosa. For patients with mild to moderate UC, the best pharmacological treatment includes glucocorticoids, immunosuppressants, antibiotics, and biologics, but the long-term application can have serious toxic side effects. Currently, nearly 40% of UC patients are treated with herbal natural products in combination with traditional medications to reduce the incidence of toxic side effects. Flavonoid herbal natural products are the most widely distributed polyphenols in plants and fruits, which have certain antioxidant and anti-inflammatory activities. Flavonoid herbal natural products have achieved remarkable efficacy in the treatment of UC. The pharmacological mechanisms are related to anti-inflammation, promotion of mucosal healing, maintenance of intestinal immune homeostasis, and regulation of intestinal flora. In this paper, we summarize the flavonoid components of anti-ulcerative colitis and their mechanisms reported in the past 10 years, to provide a basis for rational clinical use and the development of new anti-ulcerative colitis drugs.


Asunto(s)
Productos Biológicos , Colitis Ulcerosa , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Colitis Ulcerosa/patología , Recto/patología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
10.
Biomed Pharmacother ; 156: 113746, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36228376

RESUMEN

Salidroside (SAL) is a phenylpropanoid glycoside monomer extracted from Rhodiola at high altitudes. It has been proven to have protective effects on myocardial injury, liver cancer, renal fibrosis, and other organ diseases, as well as play neuroprotective roles in central nervous system (CNS) diseases. Specifically, SAL can inhibit a series of pathological reactions in CNS diseases and improve neurological dysfunction. This review elucidated the pharmacological effects of SAL on inflammation, oxidative stress, apoptosis, autophagy, and neuronal regeneration. Furthermore, how SAL affects various signaling pathways to regulate pathological processes in CNS diseases is also assessed. However, the relationship between various pathways and the mechanisms in different pathological stages remains unclear. Additionally, the appropriate dosage and side effects of SAL on the clinical outcomes of CNS diseases have not been fully determined due to the limited number of clinical studies on SAL. Therefore, the regulatory mechanisms and clinical applications of SAL still need to be further demonstrated. This review tracked and summarized studies from the past eight years reported in databases, including PubMed, ScienceDirect, and Google Scholar, filtered using the keywords "salidroside" and/or paired with "diseases" and "CNS diseases".


Asunto(s)
Enfermedades del Sistema Nervioso Central , Rhodiola , Glucósidos/farmacología , Glucósidos/uso terapéutico , Fenoles/farmacología , Fenoles/uso terapéutico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico
11.
Life Sci ; 309: 120976, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36126724

RESUMEN

AIMS: To determine the effects of valproic acid (VPA) on anti-proliferative effects and mitochondrial function in breast cancer cells and the underlying mechanisms involved in the effects, with a focus on signal transduction. MAIN METHODS: The inhibitory effect of valproic acid on breast cancer in vivo and in vitro was evaluated by cellular and animal experiments. Mitochondria-related proteins as well as hippo pathway were monitored by western blotting. The effects of VPA on mitochondrial membrane potential, reactive oxygen species, and apoptosis were confirmed by flow cytometry. In addition, the involvement of hippo pathway in the regulation of mitochondrial function by VPA was verified by XMU-MP-1 (MST2 inhibitor). KEY FINDINGS: In this study, we highlight that VPA significantly attenuates mitochondrial function, leading to inhibited cell proliferation and reduced colony formation in MCF-7 and MDA-MB-231 breast cancer cells. Mechanistically, VPA-induced suppression of mitochondrial aerobic respiration was mediated by decreased expression of mitochondrial elongation factor 1 through activation of the hippo pathway, resulting in impaired breast cancer growth. In summary, we uncover a novel mechanism of VPA in regulating mitochondrial aerobic respiration, which is essential for developing an effective approach in breast cancer therapy. SIGNIFICANCE: Mitochondrial aerobic respiration and its products are the main sources of energy for tumors; therefore, studying the role of mitochondrial function in tumor cells is significant. VPA has been used as a therapeutic agent for cancer. However, the detail mechanism underlying the effects of VPA on mitochondrial function in breast cancer remains unclear.


Asunto(s)
Neoplasias , Ácido Valproico , Animales , Ácido Valproico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Línea Celular Tumoral , Potencial de la Membrana Mitocondrial , Apoptosis , Proteínas Mitocondriales/metabolismo
12.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35955628

RESUMEN

Inflammatory bowel disease (IBD) is a chronic, relapsing disease that severely affects patients' quality of life. The exact cause of IBD is uncertain, but current studies suggest that abnormal activation of the immune system, genetic susceptibility, and altered intestinal flora due to mucosal barrier defects may play an essential role in the pathogenesis of IBD. Unfortunately, IBD is currently difficult to be wholly cured. Thus, more treatment options are needed for different patients. Stem cell therapy, mainly including hematopoietic stem cell therapy and mesenchymal stem cell therapy, has shown the potential to improve the clinical disease activity of patients when conventional treatments are not effective. Stem cell therapy, an emerging therapy for IBD, can alleviate mucosal inflammation through mechanisms such as immunomodulation and colonization repair. Clinical studies have confirmed the effectiveness of stem cell transplantation in refractory IBD and the ability to maintain long-term remission in some patients. However, stem cell therapy is still in the research stage, and its safety and long-term efficacy remain to be further evaluated. This article reviews the upcoming stem cell transplantation methods for clinical application and the results of ongoing clinical trials to provide ideas for the clinical use of stem cell transplantation as a potential treatment for IBD.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Enfermedades Inflamatorias del Intestino , Células Madre Mesenquimatosas , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Intestinos/patología , Células Madre Mesenquimatosas/patología , Calidad de Vida
13.
Front Pharmacol ; 13: 892790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873579

RESUMEN

Inflammatory bowel disease (IBD) is a rare, recurrent, and intractable inflammation obstruction of the stomach tract, usually accompanied by inflammation of cell proliferation and inflammation of the colon and carries a particular cause of inflammation. The clinical use of drugs in western countries affects IBD treatment, but various adverse effects and high prices limit their application. For these reasons, Traditional Chinese Medicine (TCM) is more advantageous in treating IBD. This paper reviews the mechanism and research status of TCM and natural products in IBD treatment by analyzing the relevant literature to provide a scientific and theoretical basis for IBD treatment.

14.
Biomed Pharmacother ; 150: 113063, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35658233

RESUMEN

The Warburg effect is a promising target for the diagnosis and treatment of cancer, referring to the ability of cancer cells to generate energy through high levels of glycolysis even in the presence of oxygen, allowing them to grow and proliferate rapidly. The antipsychotic Pimozide has strong anti-breast cancer effects both in vivo and in vitro, whether Pimozide has an inhibitory effect on aerobic glycolysis has not been elucidated. In this study, Pimozide inhibited the Warburg effect of breast cancer cells by hindering glucose uptake, ATP level and lactate production; reducing the extracellular acidification rate (ECAR); suppressing the expression of PKM2, a rate-limiting enzyme in glycolysis. Intriguingly, Pimozide was significantly involved in reprogramming glucose metabolism in breast cancer cells through a p53-dependent manner. Mechanistic studies demonstrated Pimozide increased the expression of p53 through inhibition of the PI3K/Akt/MDM2 signaling pathway, which in turn downregulated the expression of PKM2. In sum, our results suggest that Pimozide mediates the p53 signaling pathway through PI3K/AKT/MDM2 to inhibit the Warburg effect and breast cancer growth, and it may be a potential aerobic glycolysis inhibitor for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Proteína p53 Supresora de Tumor , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Femenino , Glucólisis , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Pimozida/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
15.
Chin Med ; 17(1): 74, 2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717380

RESUMEN

Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the intestine, including Crohn's disease (CD) and ulcerative colitis (UC), whose etiology and pathogenesis have not been fully understood. Due to its prolonged course and chronic recurrence, IBD imposes a heavy economic burden and psychological stress on patients. Traditional Chinese Herbal Medicine has unique advantages in IBD treatment because of its symptomatic treatment. However, the advantages of the Chinese Herbal Medicine Formula (CHMF) have rarely been discussed. In recent years, many scholars have conducted fundamental studies on CHMF to delay IBD from different perspectives and found that CHMF may help maintain intestinal integrity, reduce inflammation, and decrease oxidative stress, thus playing a positive role in the treatment of IBD. Therefore, this review focuses on the mechanisms associated with CHMF in IBD treatment. CHMF has apparent advantages. In addition to the exact composition and controlled quality of modern drugs, it also has multi-component and multi-target synergistic effects. CHMF has good prospects in the treatment of IBD, but its multi-agent composition and wide range of targets exacerbate the difficulty of studying its treatment of IBD. Future research on CHMF-related mechanisms is needed to achieve better efficacy.

16.
Exp Ther Med ; 23(4): 255, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35261627

RESUMEN

Coronary heart disease is the leading cause of mortality among all diseases globally. Percutaneous coronary intervention (PCI) is a key method for the treatment of coronary heart disease. Optical coherence tomography (OCT) is an optical diagnostic technology with a resolution of up to 10 µm, which is able to accurately assess the composition of the coronary arterial wall and determine the characteristics of atherosclerotic lesions. It is also highly consistent with pathological examinations, optimizing the effect of stent implantation and evaluation of the long-term effectiveness and safety of the stent, which has irreplaceable value in the field of precision and optimization of coronary intervention. The innovative OCT technology may help provide more comprehensive clinical research evidence. The application of OCT in clinical and basic research of coronary atherosclerosis, selection of treatment strategies for acute coronary syndromes, optimization of interventional treatment efficacy, evaluation of novel stents, intimal stent coverage and selection of dual antiplatelet drugs has become more widely used, affecting the current coronary interventional treatment strategies to a certain extent. The aim of the present review was to discuss the role of OCT in evaluating preoperative plaque characteristics, guiding PCI and evaluating the effects of postoperative stents or drug treatments.

17.
Oxid Med Cell Longev ; 2022: 1348795, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265260

RESUMEN

Cardiovascular diseases, also known as circulatory diseases, are diseases of the heart and blood vessels, and its etiology is hyperlipidemia, thick blood, atherosclerosis, and hypertension. Due to its high prevalence, disability, and mortality, it seriously threatens human health. According to reports, the incidence of cardiovascular disease is still on the rise. Rhodiola rosea is a kind of traditional Chinese medicine, which has the effects of antimyocardial ischemia-reperfusion injury, lowering blood fat, antithrombosis, and antiarrhythmia. Rhodiola rosea has various chemical components, and different chemical elements have the same pharmacological effects and medicinal values for various cardiovascular diseases. This article reviews the research on the pharmacological effects of Rhodiola rosea on cardiovascular diseases and provides references for the clinical treatment of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Medicina Tradicional China/métodos , Extractos Vegetales/uso terapéutico , Rhodiola/química , Animales , Humanos , Ratones , Extractos Vegetales/farmacología , Ratas
18.
Oxid Med Cell Longev ; 2021: 3206982, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594474

RESUMEN

Fibrosis is defined as the pathological progress of excessive extracellular matrix (ECM), such as collagen, fibronectin, and elastin deposition, as the regenerative capacity of cells cannot satisfy the dynamic repair of chronic damage. The well-known features of tissue fibrosis are characterized as the presence of excessive activated and proliferated fibroblasts and the differentiation of fibroblasts into myofibroblasts, and epithelial cells undergo the epithelial-mesenchymal transition (EMT) to expand the number of fibroblasts and myofibroblasts thereby driving fibrogenesis. In terms of mechanism, during the process of fibrosis, the activations of the TGF-ß signaling pathway, oxidative stress, cellular senescence, and inflammatory response play crucial roles in the activation and proliferation of fibroblasts to generate ECM. The deaths due to severe fibrosis account for almost half of the total deaths from various diseases, and few treatment strategies are available for the prevention of fibrosis as yet. Recently, numerous studies demonstrated that three well-defined bioactive gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), generally exhibited anti-inflammatory, antioxidative, antiapoptotic, and antiproliferative properties. Besides these effects, a number of studies have reported that low-dose exogenous and endogenous gasotransmitters can delay and interfere with the occurrence and development of fibrotic diseases, including myocardial fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, diabetic diaphragm fibrosis, and peritoneal fibrosis. Furthermore, in animal and clinical experiments, the inhalation of low-dose exogenous gas and intraperitoneal injection of gaseous donors, such as SNAP, CINOD, CORM, SAC, and NaHS, showed a significant therapeutic effect on the inhibition of fibrosis through modulating the TGF-ß signaling pathway, attenuating oxidative stress and inflammatory response, and delaying the cellular senescence, while promoting the process of autophagy. In this review, we first demonstrate and summarize the therapeutic effects of gasotransmitters on diverse fibrotic diseases and highlight their molecular mechanisms in the process and development of fibrosis.


Asunto(s)
Gasotransmisores/uso terapéutico , Cardiopatías/tratamiento farmacológico , Cirrosis Hepática/tratamiento farmacológico , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Fibrosis , Gasotransmisores/química , Gasotransmisores/farmacología , Cardiopatías/patología , Humanos , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Cirrosis Hepática/patología , Óxido Nítrico/química , Óxido Nítrico/farmacología , Óxido Nítrico/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
19.
Phys Chem Chem Phys ; 23(34): 18404-18413, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34612381

RESUMEN

As a human mitotic kinase, haspin is considered as a promising target for various diseases including cancers. However, no inhibitors targeting haspin have entered clinical trials presently. 5-iTU (5-iodotubercidin) is a useful and classical chemical probe for the investigation of haspin activity, but its inhibitory mechanism remains unclear. In this study, integrated molecular dynamics (MD) of conventional MD, extended adaptive biasing force (eABF), random acceleration MD and well-tempered metadynamics were applied to investigate the thermodynamic and kinetic features of 5-iTU and three derivatives targeting haspin. To emphasize the importance of gatekeeper Phe605, two haspin mutants (F605Y and F605T) were also built. The results showed that the binding affinity of 5-iTU and haspin was highest in all wild type (WT) systems, relying on the strong halogen aromatic π interaction between 5-iTU and gatekeeper Phe605. Gatekeeper mutations, because of damage to this interaction, led to the rearrangement of water distributions at the binding site and the decrease of 5-iTU residence times. Additionally, compared with the smaller 5-fTU, 5-iTU dissociated from WT haspin with more difficulty through distinct unbinding pathways. These findings will provide crucial guidance for the design and development of novel haspin inhibitors and the rational modification of existing inhibitors.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Termodinámica , Tubercidina/análogos & derivados , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinética , Conformación Molecular , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Tubercidina/química , Tubercidina/farmacología
20.
Front Pharmacol ; 12: 704481, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483908

RESUMEN

Background: Psoriasis is a T help 17 (Th17) cell-mediated chronic inflammatory skin disease. Recent studies have shown that dihydroartemisinin (DHA) can significantly reduce experimental autoimmune encephalomyelitis and rheumatoid arthritis by regulating Th17 cells. Objective: To verify whether DHA can improve the symptoms of psoriasis and to further explore the possible mechanism. Methods: The efficiency of DHA was preliminary detected on human keratinocytes (HaCaT) cells in psoriatic condition. Then, imiquimod-induced psoriasis-like model in BALB/c mice was established to evaluate the effects of DHA in vivo. Results: Under the stimulation of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), DHA inhibited the proliferation of HaCaT cells and significantly affected the mRNA expression levels of IFN-γ, interleukin (IL), IL-17A and IL-23. DHA treatment reduced the severity of psoriasis-like skin and resulted in less infiltration of immune cells in skin lesions. DHA restored the expression of IFN-γ, IL-17A, and IL-23 in skins, as well as a decrease of cytokines and chemokines in skin supernatant. DHA also altered the cellular composition in the spleen, which is the makeup of the T cells, dendritic cells (DCs), and macrophages. DHA recovered Th17-related profile with decreased frequency of IL-17+CD4+T cells from splenocyte of mice. Furthermore, DHA also inhibited the concentration of IL-17 from Th17 cells and the expression of Th17 cell-related transcription factors retinoid-related orphan receptor-gamma t (ROR-γt) in vitro. In addition, phosphorylation of signal transducer and activator of transcription-3 (STAT3) was significantly reduced in DHA treatment mice, suggesting that the IL-23/Th17 axis plays a pivotal role. Conclusion: DHA inhibits the progression of psoriasis by regulating IL-23/Th17 axis and is expected to be an effective drug for the treatment of psoriasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...