Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673733

RESUMEN

Grain size is a quantitative trait with a complex genetic mechanism, characterized by the combination of grain length (GL), grain width (GW), length to width ration (LWR), and grain thickness (GT). In this study, we conducted quantitative trait loci (QTL) analysis to investigate the genetic basis of grain size using BC1F2 and BC1F2:3 populations derived from two indica lines, Guangzhan 63-4S (GZ63-4S) and TGMS29 (core germplasm number W240). A total of twenty-four QTLs for grain size were identified, among which, three QTLs (qGW1, qGW7, and qGW12) controlling GL and two QTLs (qGW5 and qGL9) controlling GW were validated and subsequently fine mapped to regions ranging from 128 kb to 624 kb. Scanning electron microscopic (SEM) analysis and expression analysis revealed that qGW7 influences cell expansion, while qGL9 affects cell division. Conversely, qGW1, qGW5, and qGW12 promoted both cell division and expansion. Furthermore, negative correlations were observed between grain yield and quality for both qGW7 and qGW12. Nevertheless, qGW5 exhibited the potential to enhance quality without compromising yield. Importantly, we identified two promising QTLs, qGW1 and qGL9, which simultaneously improved both grain yield and quality. In summary, our results laid the foundation for cloning these five QTLs and provided valuable resources for breeding rice varieties with high yield and superior quality.


Asunto(s)
Mapeo Cromosómico , Grano Comestible , Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Fenotipo , Cromosomas de las Plantas/genética , Semillas/genética , Semillas/crecimiento & desarrollo
2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673973

RESUMEN

The quality of rice, evaluated using multiple quality-related traits, is the main determinant of its market competitiveness. In this study, two japonica rice varieties with significant differences in quality-related traits were used as parents to construct two populations, BC3F2 and BC3F2:3, with Kongyu131 (KY131) as the recurrent parent. A genetic linkage map was constructed using the BC3F2 population based on 151 pairs of SSR/InDel polymorphic markers selected between the parents. Grain-shape-related traits (grain length GL, grain width GW, and length-to-width ratio LWR), chalkiness-related traits (white-core rate WCR, white-belly rate WBR, white-back rate BR, and chalkiness rate CR), and amylose content (AC) were investigated in the two populations in 2017 and 2018. Except for BR and CR, the traits showed similar characteristics with a normal distribution in both populations. Genetic linkage analysis was conducted for these quality-related traits, and a total of 37 QTLs were detected in the two populations. Further validation was performed on the newly identified QTLs with larger effects, and three grain shape QTLs and four chalkiness QTLs were successfully validated in different environments. One repeatedly validated QTL, qWCR3, was selected for fine mapping and was successfully narrowed down to a 100 kb region in which only two genes, LOC_0s03g45210 and LOC_0s03g45320, exhibited sequence variations between the parents. Furthermore, the variation of LOC_Os03g45210 leads to a frameshift mutation and premature protein termination. The results of this study provide a theoretical basis for positional cloning of the qWCR3 gene, thus offering new genetic resources for rice quality improvement.


Asunto(s)
Mapeo Cromosómico , Ligamiento Genético , Oryza , Fenotipo , Sitios de Carácter Cuantitativo , Oryza/genética , Mapeo Cromosómico/métodos , Grano Comestible/genética , Cromosomas de las Plantas/genética , Genes de Plantas
3.
Front Neurosci ; 18: 1372410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633267

RESUMEN

Rationale: Intracranial ependymal cysts are relatively rare. The current case report focuses on a patient who was diagnosed with an ependymal cyst and underwent surgical treatment. Postoperative pathological examination confirmed the presence of this lesion in the cerebellum. Chief complaint: A 32-year-old female patient presented with a chief complaint of dizziness and headache with no triggers for the past 1 year. She also reported an increase in the frequency and intensity of symptoms in the past 2 weeks. Diagnosis: Cranial magnetic resonance imaging (MRI) showed a rounded long T1 and T2 abnormal signal foci in the left posterior part of the brainstem under the cerebellar pallidum. The lesion had a clear boundary, was approximately 4.0 × 3.1 × 3.2 cm in size, and did not exhibit any definitive enhancement. Interventions: Total resection of the lesion was carried out after completion of the preoperative examination.Treatment outcomes. The patient was discharged from the hospital on postoperative day 11 once their symptoms had disappeared. The sensory and motor functions of the limbs remained unaffected by treatment. Experiences: Cerebellum ependymal cysts are rare, and most patients only experience discomfort due to cerebral edema. These lesions are also often difficult to differentiate from other intracranial cysts using imaging alone. The aim of this study was to report a rare case of ependymal cyst so that it may serve as a reference for diagnosis and treatment in the future.

5.
Sci China Life Sci ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38679669

RESUMEN

Inbreeding depression refers to the reduced performance arising from increased homozygosity, a phenomenon that is the reverse of heterosis and exists among plants and animals. As a natural self-pollinated crop with strong heterosis, the mechanism of inbreeding depression in rice is largely unknown. To understand the genetic basis of inbreeding depression, we constructed a successive inbreeding population from the F2 to F4 generation and observed inbreeding depression of all heterotic traits in the progeny along with the decay of heterozygosity in each generation. The expected depression effect was largely explained by 13 QTLs showing dominant effects for spikelets per panicle, 11 for primary branches, and 12 for secondary branches, and these loci constitute the main correlation between heterosis and inbreeding depression. However, the genetic basis of inbreeding depression is also distinct from that of heterosis, such that a biased transmission ratio of alleles for QTLs with either dominant or additive effects in four segregation distortion regions would result in minor effects in expected depression. Noticeably, two-locus interactions may change the extent and direction of the depression effects of the target loci, and overall interactions would promote inbreeding depression among generations. Using an F2:3 variation population, the actual performance of the loci showing expected depression was evaluated considering the heterozygosity decay in the background after inbreeding. We found inconsistent or various degrees of background depression from the F2 to F3 generation assuming different genotypes of the target locus, which may affect the actual depression effect of the locus due to epistasis. The results suggest that the genetic architecture of inbreeding depression and heterosis is closely linked but also differs in their intrinsic mechanisms, which expand our understanding of the whole-genome architecture of inbreeding depression.

6.
Natl Sci Rev ; 10(9): nwad210, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37621414

RESUMEN

Male sterility in plants provides valuable breeding tools in germplasm innovation and hybrid crop production. However, genetic resources for dominant genic male sterility, which hold great promise to facilitate breeding processes, are extremely rare in natural germplasm. Here we characterized the Sanming Dominant Genic Male Sterility in rice and identified the gene SDGMS using a map-based cloning approach. We found that spontaneous movement of a 1978-bp long terminal repeat (LTR) retrotransposon into the promoter region of the SDGMS gene activates its expression in anther tapetum, which causes abnormal programmed cell death of tapetal cells resulting in dominant male sterility. SDGMS encodes a ribosome inactivating protein showing N-glycosidase activity. The activation of SDGMS triggers transcription reprogramming of genes responsive to biotic stress leading to a hypersensitive response which causes sterility. The results demonstrate that an ectopic gene activation by transposon movement can give birth to a novel trait which enriches phenotypic diversity with practical utility.

7.
Mol Plant ; 16(4): 726-738, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36843324

RESUMEN

Hybrid rice has made considerable contributions to achieve the ambitious goal of food security for the world's population. Hybrid rice from indica/xian and japonica/geng subspecies shows much higher heterosis and is thereby an important innovation in promoting rice production in the next decade. However, such inter-subspecific hybrid rice has long suffered from serious hybrid sterility, which is a major challenge that needs to be addressed. In this study, we performed a genome design strategy to produce fertile inter-subspecific hybrid by creation of wide compatibility varieties that are able to overcome hybrid sterility. Based on combined genetic analyses in two indica-japonica crosses, we determined that four hybrid sterility loci, S5, f5, pf12 and Sc, are the major QTLs controlling inter-subspecific hybrid sterility and thus the minimal targets that can be manipulated for breeding sub-specific hybrid rice. We then cloned the pf12 locus, one of the most effective loci for hybrid male sterility, by map-based cloning, and showed that artificial disruption of pf12A gene at this locus could successfully rescue hybrid fertility. We further dissected the genetic basis of wide compatibility using three pairwise crosses from a wide-compatibility variety Dular and representative indica and japonica varieties. On this basis, we constructed and assembled different combinations of naturally compatible alleles of four loci, S5, Sc, pf12, and f5, and found that the improved lines could fully recover pollen and embryo sac fertility in test-crossed F1s, thereby completely fulfilling the demands of inter-subspecific hybrid spikelet fertility in agricultural production. This breeding scheme would facilitate redesign of future inter-subspecific hybrid rice with a higher yield potential.


Asunto(s)
Infertilidad , Oryza , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Fertilidad/genética , Infertilidad/genética
8.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614293

RESUMEN

Global food security has benefited from the development and promotion of the two-line hybrid rice system. Excellent eating quality determines the market competitiveness of hybrid rice varieties based on achieving the fundamental requirements of high yield and good adaptability. Developing sterile and restorer lines with improved quality for two-line hybrid breeding by editing quality genes with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 is an efficient and practical alternative to the lengthy and laborious process of conventional breeding to improve rice quality. We edited Wx and OsBADH2 using CRISPR/Cas9 technology to produce both homozygous male sterile mutant lines and homozygous restorer mutant lines with Cas9-free. These mutants have a much lower amylose content while having a significantly higher 2-acetyl-1-pyrroline aroma content. Based on this, a fragrant glutinous hybrid rice was developed without too much effect on most agronomic traits. This study demonstrates the use of CRISPR/Cas9 in creating two-line fragrant glutinous hybrid rice by editing the components of the male sterile and the restorative lines.


Asunto(s)
Sistemas CRISPR-Cas , Oryza , Sistemas CRISPR-Cas/genética , Oryza/genética , Odorantes , Fitomejoramiento , Genes de Plantas , Edición Génica
9.
Front Mol Biosci ; 9: 931525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203880

RESUMEN

Heat shock proteins (Hsps) function as molecular chaperones that enable organisms to withstand stress and maintain normal life activities. In this study, we identified heat shock protein 70 (encoded by hsp70), which exhibits a higher expression in the mature male testis than in the unmature testis of Ophraella communa. Tissue expression profile revealed that Ochsp70 levels in males were highest in the testis, whereas those in females were highest in the head. Moreover, the expression of Ochsp70 was found to be significantly induced in female bursa copulatrix after mating. Double-stranded RNA dsOchsp70 was injected into males to performance RNA interference, which significantly decreased the male Ochsp70 expression levels within 20 d post-injection, whereas no effect was observed on the Ochsp70 expression level in the females after mating with dsOchsp70-injected males. However, significant downregulation of female fertility was marked simultaneously. Furthermore, knockdown of female Ochsp70 expression also led to a significant reduction in fertility. Finally, comparative transcriptomic analysis identified glucose dehydrogenase and insulin-like growth factor binding protein as putative downstream targets of Ochsp70. Overall, we deduced that Ochsp70 is an indispensable gene and a potential male mating factor in O. communa, which regulates reproduction.

10.
Front Plant Sci ; 13: 901541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937336

RESUMEN

Quality is a complex trait that is not only the key determinant of the market value of the rice grain, but is also a major constraint in rice breeding. It is influenced by both genetic and environmental factors. However, the combined effects of genotypes and environmental factors on rice grain quality remain unclear. In this study, we used a three-factor experimental design to examine the grain quality of different Wx genotypes grown under different nitrogen fertilization and temperature conditions during grain development. We found that the three factors contributed differently to taste, appearance, and nutritional quality. Increased Wx function and nitrogen fertilization significantly reduced eating quality, whereas high temperature (HT) had almost no effect. The main effects of temperature on appearance quality and moderate Wx function at low temperatures (LTs) contributed to better appearance, and higher nitrogen fertilization promoted appearance at HTs. With regard to nutritional quality, Wx alleles promoted amylose content (AC) as well as starch-lipids content (SLC); nitrogen fertilization increased storage protein content (PC); and higher temperature increased lipid content but decreased the PC. This study helps to broaden the understanding of the major factors that affect the quality of rice and provides constructive messages for rice quality improvement and the cultivation of high-quality rice varieties.

11.
Proc Natl Acad Sci U S A ; 119(34): e2208759119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969741

RESUMEN

Cytoplasmic male sterility (CMS) determined by mitochondrial genes and restorer of fertility (Rf) controlled by nuclear-encoded genes provide the breeding systems of many hybrid crops for the utilization of heterosis. Although several CMS/Rf systems have been widely exploited in rice, hybrid breeding using these systems has encountered difficulties due to either fertility instability or complications of two-locus inheritance or both. In this work, we characterized a type of CMS, Fujian Abortive cytoplasmic male sterility (CMS-FA), with stable sporophytic male sterility and a nuclear restorer gene that completely restores hybrid fertility. CMS is caused by the chimeric open reading frame FA182 that specifically occurs in the mitochondrial genome of CMS-FA rice. The restorer gene OsRf19 encodes a pentatricopeptide repeat (PPR) protein targeted to mitochondria, where it mediates the cleavage of FA182 transcripts, thus restoring male fertility. Comparative sequence analysis revealed that OsRf19 originated through a recent duplication in wild rice relatives, sharing a common ancestor with OsRf1a/OsRf5, a fertility restorer gene for Boro II and Hong-Lian CMS. We developed six restorer lines by introgressing OsRf19 into parental lines of elite CMS-WA hybrids; hybrids produced from these lines showed equivalent or better agronomic performance relative to their counterparts based on the CMS-WA system. These results demonstrate that CMS-FA/OsRf19 provides a highly promising system for future hybrid rice breeding.


Asunto(s)
Oryza , Infertilidad Vegetal , Hibridación Genética , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/metabolismo
12.
Theor Appl Genet ; 135(10): 3417-3431, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35941236

RESUMEN

KEY MESSAGE: We report the map-based cloning and functional characterization of SNG1, which encodes OsHXK3, a hexokinase-like protein that plays a pivotal role in controlling grain size in rice. Grain size is an important agronomic trait determining grain yield and appearance quality in rice. Here, we report the discovery of rice mutant short and narrow grain1 (sng1) with reduced grain length, width and weight. Map-based cloning revealed that the mutant phenotype was caused by loss of function of gene OsHXK3 that encodes a hexokinase-like (HKL) protein. OsHXK3 was associated with the mitochondria and was ubiquitously distributed in various organs, predominately in younger organs. Analysis of glucose (Glc) phosphorylation activities in young panicles and protoplasts showed that OsHXK3 was a non-catalytic hexokinase (HXK). Overexpression of OsHXK3 could not complement the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, indicating that OsHXK3 lacked Glc signaling activity. Scanning electron microscopy analysis revealed that OsHXK3 affects grain size by promoting spikelet husk cell expansion. Knockout of other nine OsHXK genes except OsHXK3 individually did not change grain size, indicating that functions of OsHXKs have differentiated in rice. OsHXK3 influences gibberellin (GA) biosynthesis and homeostasis. Compared with wild type, OsGA3ox2 was significantly up-regulated and OsGA2ox1 was significantly down-regulated in young panicle of sng1, and concentrations of biologically active GAs were significantly decreased in young panicles of the mutants. The yield per plant of OsHXK3 overexpression lines (OE-4 and OE-35) was increased by 10.91% and 7.62%, respectively, compared to that of wild type. Our results provide evidence that an HXK lacking catalytic and sensory functions plays an important role in grain size and has the potential to increase yield in rice.


Asunto(s)
Oryza , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Glucosa/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955848

RESUMEN

Grain size is a key determinant of both grain weight and grain quality. Here, we report the map-based cloning of a novel quantitative trait locus (QTL), GLW7.1 (Grain Length, Width and Weight 7.1), which encodes the CCT motif family protein, GHD7. The QTL is located in a 53 kb deletion fragment in the cultivar Jin23B, compared with the cultivar CR071. Scanning electron microscopy analysis and expression analysis revealed that GLW7.1 promotes the transcription of several cell division and expansion genes, further resulting in a larger cell size and increased cell number, and finally enhancing the grain size as well as grain weight. GLW7.1 could also increase endogenous GA content by up-regulating the expression of GA biosynthesis genes. Yeast two-hybrid assays and split firefly luciferase complementation assays revealed the interactions of GHD7 with seven grain-size-related proteins and the rice DELLA protein SLR1. Haplotype analysis and transcription activation assay revealed the effect of six amino acid substitutions on GHD7 activation activity. Additionally, the NIL with GLW7.1 showed reduced chalkiness and improved cooking and eating quality. These findings provide a new insight into the role of Ghd7 and confirm the great potential of the GLW7.1 allele in simultaneously improving grain yield and quality.


Asunto(s)
Oryza , Alelos , Grano Comestible/genética , Oryza/genética , Oryza/metabolismo , Sitios de Carácter Cuantitativo
14.
Front Oncol ; 12: 868164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463357

RESUMEN

Background: With advances in high-throughput computational mining techniques, various quantitative predictive models that are based on ultrasound have been developed. However, the lack of reproducibility and interpretability have hampered clinical use. In this study, we aimed at developing and validating an interpretable and simple-to-use US nomogram that is based on quantitative morphometric features for the prediction of breast malignancy. Methods: Successive 917 patients with histologically confirmed breast lesions were included in this retrospective multicentric study and assigned to one training cohort and two external validation cohorts. Morphometric features were extracted from grayscale US images. After feature selection and validation of regression assumptions, a dynamic nomogram with a web-based calculator was developed. The performance of the nomogram was assessed with respect to calibration, discrimination, and clinical usefulness. Results: Through feature selection, three morphometric features were identified as being the most optimal for predicting malignancy, and all regression assumptions of the prediction model were met. Combining all these predictors, the nomogram demonstrated a good discriminative performance in the training cohort and in the two external validation cohorts with AUCs of 0.885, 0.907, and 0.927, respectively. In addition, calibration and decision curves analyses showed good calibration and clinical usefulness. Conclusions: By incorporating US morphometric features, we constructed an interpretable and easy-to-use dynamic nomogram for quantifying the probability of breast malignancy. The developed nomogram has good generalization abilities, which may fit into clinical practice and serve as a potential tool to guide personalized treatment. Our findings show that quantitative morphometric features from different ultrasound machines and systems can be used as imaging surrogate biomarkers for the development of robust and reproducible quantitative ultrasound dynamic models in breast cancer research.

15.
J Genet Genomics ; 49(5): 448-457, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35304326

RESUMEN

In rice, the Yongyou series of Xian-Geng intersubspecific hybrids have excellent production performance, as shown by their extremely high yield. However, the mechanisms underlying the success of these rice hybrids are unclear. In this study, three F2 populations are generated from three Yongyou hybrids to determine the genetic basis of the extremely high yield of intersubspecific hybrids. Genome constitution analysis reveals that the female and male parental lines belong to the Geng and Xian subspecies, respectively, although introgression of 20% of the Xian ancestry and 14% of the Geng ancestry are observed. Twenty-five percent of the hybrid genomes carries homozygous Xian or Geng fragments, which harbors hybrid sterility genes such as Sd, Sc, f5, and qS12 and favorable alleles of key yield-related genes, including NAL1, Ghd7, and Ghd8. None of the parents carries the S5+ killer of the S5 killer-protector system. Compatible allele combinations of hybrid sterility genes ensure the fertility of these intersubspecific hybrids and overcome the bottleneck in applying intersubspecific hybrids. Additive effects of favorable alleles of yield-related genes fixed in both parents enhances midparent values. Many QTLs for yield and its key component spikelets per panicle shows dominance and the net positive dominant effects lead to heterosis. These factors result in an extremely high yield of the hybrids. These findings will aid in the development of new intersubspecific rice hybrids with diverse genetic backgrounds.


Asunto(s)
Infertilidad , Oryza , Alelos , Vigor Híbrido/genética , Infertilidad/genética , Oryza/genética , Sitios de Carácter Cuantitativo/genética
16.
Plant Cell ; 34(5): 1912-1932, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35171272

RESUMEN

Grain chalkiness reduces the quality of rice (Oryza sativa) and is a highly undesirable trait for breeding and marketing. However, the underlying molecular cause of chalkiness remains largely unknown. Here, we cloned the F-box gene WHITE-CORE RATE 1 (WCR1), which negatively regulates grain chalkiness and improves grain quality in rice. A functional A/G variation in the promoter region of WCR1 generates the alleles WCR1A and WCR1G, which originated from tropical japonica and wild rice Oryza rufipogon, respectively. OsDOF17 is a transcriptional activator that binds to the AAAAG cis-element in the WCR1A promoter. WCR1 positively affects the transcription of the metallothionein gene MT2b and interacts with MT2b to inhibit its 26S proteasome-mediated degradation, leading to decreased reactive oxygen species production and delayed programmed cell death in rice endosperm. This, in turn, leads to reduced chalkiness. Our findings uncover a molecular mechanism underlying rice chalkiness and identify the promising natural variant WCR1A, with application potential for rice breeding.


Asunto(s)
Endospermo , Oryza , Grano Comestible/genética , Endospermo/genética , Regulación de la Expresión Génica de las Plantas/genética , Homeostasis/genética , Oryza/genética , Oryza/metabolismo , Oxidación-Reducción
17.
Mol Breed ; 42(11): 68, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37313476

RESUMEN

Rice grain size is a key determinant of both grain yield and quality. In this study, we conducted QTL mapping on grain size using a recombinant inbred line (RIL) population derived from a cross between japonica variety Beilu130 (BL130) and indica variety Jin23B (J23B). A total of twenty-two QTL related to grain length (GL), grain width (GW), grain length-to-width ratio (LWR), grain thickness (GT), and thousand grain weight (TGW) were detected under two environments, and 14 of them were repeatedly detected. Two minor QTL, qTGW2b and qGL9, were validated and further delimited to regions of 631 kb and 272 kb, respectively. Parental sequence comparison of genes expressed in inflorescence in corresponding candidate regions identified frameshifts in the exons of LOC_Os02g38690 and LOC_Os02g38780, both of which encode protein phosphatase 2C-containing protein, and LOC_Os09g29930, which encodes a BIM2 protein. Scanning electron microscopy (SEM) analysis revealed that the increase of cell size rather than cell number caused the differences in grain size between NILs of qTGW2b and qGL9. Quantitative RT-PCR analysis showed that the expression levels of EXPA4, EXPA5, EXPA6, EXPB3, EXPB4, and EXPB7 were significantly different in both qTGW2b NILs and qGL9 NILs. Our results lay the foundation for the cloning of qTGW2b and qGL9, and provide genetic materials for the improvement of rice yield and quality. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01328-2.

18.
J Craniofac Surg ; 33(4): e365-e368, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34694764

RESUMEN

RATIONALE: Non-missile penetrating injuries caused by foreign bodies, such as knives or sharp wood, are infrequent. We report a 49-year-old male suffering from severe craniocervical penetrating injury by a steel bar was successfully treated by surgery. CHIEF COMPLAINT: The male patient was a 49-year-old builder. Although working on the construction site, an approximately 60 cm steel bar penetrated the patient's brain vertically through the left top of the head presenting with unconsciousness and intermittent irritability. DIAGNOSIS: Computed tomography of the head showed the entrance and exit of the skull damaged by the steel bar. Three-dimensional reconstruction showed that the steel bar entered the skull from the posterior left coronal suture and penetrated the ipsilateral occipital bone, about 5 cm into the neck soft tissue. INTERVENTION: We successfully performed the operation and removed the steel bar. OUTCOMES: The patient was followed up for 5 years; muscle strength returned to normal. LESSONS: Penetrating injuries caused by steel bars are rare, which always cause severe intracranial injury combined with peripheral tissue injury, by sharing our experience in the treatment of this rare case, we hope to provide a reference for similar injuries in the future.


Asunto(s)
Traumatismos Craneocerebrales , Cuerpos Extraños , Traumatismos Penetrantes de la Cabeza , Heridas Penetrantes , Traumatismos Craneocerebrales/etiología , Cuerpos Extraños/complicaciones , Cuerpos Extraños/diagnóstico por imagen , Cuerpos Extraños/cirugía , Traumatismos Penetrantes de la Cabeza/diagnóstico por imagen , Traumatismos Penetrantes de la Cabeza/cirugía , Humanos , Masculino , Persona de Mediana Edad , Acero , Tomografía Computarizada por Rayos X/métodos , Heridas Penetrantes/complicaciones , Heridas Penetrantes/diagnóstico por imagen , Heridas Penetrantes/cirugía
19.
J Healthc Eng ; 2021: 8554182, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567489

RESUMEN

In order to study the influence of quantitative magnetic susceptibility mapping (QSM) on them. A 2.5D Attention U-Net Network based on multiple input and multiple output, a method for segmenting RN, SN, and STN regions in high-resolution QSM images is proposed, and deep learning realizes accurate segmentation of deep nuclei in brain QSM images. Experimental results show data first cuts each layer of 0 100 case data, based on the image center, from 384 × 288 to the size of 128 × 128. Image combination: each layer of the image in the layer direction combines with two adjacent images into a 2.5D image, i.e., (It - m It; It + i), where It represents the layer i image. At this time, the size of the image changes from 128 × 128 to 128 × 128 × 3, in which 3 represents three consecutive layers of images. The SNR of SWP I to STN is twice that of SWI. The small deep gray matter nuclei (RN, SN, and STN) in QSM images of the brain and the pancreas with irregular shape and large individual differences in abdominal CT images can be automatically segmented.


Asunto(s)
Aprendizaje Profundo , Núcleo Subtalámico , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Núcleo Subtalámico/diagnóstico por imagen
20.
Comput Math Methods Med ; 2021: 2602688, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552659

RESUMEN

Accurate assessment of mitral regurgitation (MR) severity is critical in clinical diagnosis and treatment. No single echocardiographic method has been recommended for MR quantification thus far. We sought to define the feasibility and accuracy of the mask regions with a convolutional neural network (Mask R-CNN) algorithm in the automatic qualitative evaluation of MR using color Doppler echocardiography images. The authors collected 1132 cases of MR from hospital A and 295 cases of MR from hospital B and divided them into the following four types according to the 2017 American Society of Echocardiography (ASE) guidelines: grade I (mild), grade II (moderate), grade III (moderate), and grade IV (severe). Both grade II and grade III are moderate. After image marking with the LabelMe software, a method using the Mask R-CNN algorithm based on deep learning (DL) was used to evaluate MR severity. We used the data from hospital A to build the artificial intelligence (AI) model and conduct internal verification, and we used the data from hospital B for external verification. According to severity, the accuracy of classification was 0.90, 0.89, and 0.91 for mild, moderate, and severe MR, respectively. The Macro F1 and Micro F1 coefficients were 0.91 and 0.92, respectively. According to grading, the accuracy of classification was 0.90, 0.87, 0.81, and 0.91 for grade I, grade II, grade III, and grade IV, respectively. The Macro F1 and Micro F1 coefficients were 0.89 and 0.89, respectively. Automatic assessment of MR severity is feasible with the Mask R-CNN algorithm and color Doppler electrocardiography images collected in accordance with the 2017 ASE guidelines, and the model demonstrates reasonable performance and provides reliable qualitative results for MR severity.


Asunto(s)
Algoritmos , Ecocardiografía Doppler en Color/estadística & datos numéricos , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Redes Neurales de la Computación , Adulto , Anciano , Anciano de 80 o más Años , Biología Computacional , Aprendizaje Profundo , Ecocardiografía Tridimensional/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...