Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Environ Radioact ; 276: 107448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749215

RESUMEN

Among environment contaminants, 210Pb and 210Po have gained significant research attention due to their radioactive toxicity. Moss, with its exceptional adsorption capability for these radionuclides, serves as an indicator for environmental 210Pb and 210Po pollution. The paper reviews a total of 138 articles, summarizing the common methods and analytical results of 210Pb and 210Po research in moss. It elucidates the accumulation characteristics of 210Pb and 210Po in moss, discusses current research challenges, potential solutions, and future prospects in this field. Existing literature indicates limitations in common measurement techniques for 210Pb and 210Po in moss, characterized by high detection limits or lengthy sample processing. The concentration of 210Pb and 210Po within moss display substantial variations across different regions worldwide, ranging from

Asunto(s)
Briófitas , Radioisótopos de Plomo , Polonio , Monitoreo de Radiación , Radioisótopos de Plomo/análisis , Polonio/análisis , Briófitas/química , Monitoreo de Radiación/métodos
2.
BMC Cancer ; 23(1): 828, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670252

RESUMEN

BACKGROUND: The goal was to investigate the feasibility of the registration generative adversarial network (RegGAN) model in image conversion for performing adaptive radiation therapy on the head and neck and its stability under different cone beam computed tomography (CBCT) models. METHODS: A total of 100 CBCT and CT images of patients diagnosed with head and neck tumors were utilized for the training phase, whereas the testing phase involved 40 distinct patients obtained from four different linear accelerators. The RegGAN model was trained and tested to evaluate its performance. The generated synthetic CT (sCT) image quality was compared to that of planning CT (pCT) images by employing metrics such as the mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). Moreover, the radiation therapy plan was uniformly applied to both the sCT and pCT images to analyze the planning target volume (PTV) dose statistics and calculate the dose difference rate, reinforcing the model's accuracy. RESULTS: The generated sCT images had good image quality, and no significant differences were observed among the different CBCT modes. The conversion effect achieved for Synergy was the best, and the MAE decreased from 231.3 ± 55.48 to 45.63 ± 10.78; the PSNR increased from 19.40 ± 1.46 to 26.75 ± 1.32; the SSIM increased from 0.82 ± 0.02 to 0.85 ± 0.04. The quality improvement effect achieved for sCT image synthesis based on RegGAN was obvious, and no significant sCT synthesis differences were observed among different accelerators. CONCLUSION: The sCT images generated by the RegGAN model had high image quality, and the RegGAN model exhibited a strong generalization ability across different accelerators, enabling its outputs to be used as reference images for performing adaptive radiation therapy on the head and neck.


Asunto(s)
Tomografía Computarizada de Haz Cónico Espiral , Humanos , Cabeza , Cuello , Benchmarking , Tomografía Computarizada de Haz Cónico
3.
Int J Pept Res Ther ; 29(3): 42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065431

RESUMEN

Porcine interferon α (poIFN-α) is a crucial cytokine that can prevent and treat viral infections. Seventeen functional porcine IFN-α subtypes were found in the porcine genome. In this study, multiple sequence alignment was performed to analyze IFN-α protein structure and function. Phylogenetic tree analysis of the poIFN gene family defined the evolutionary relationship of various subtypes. PoIFN-αs, including poIFN-α1-17, were expressed in an Escherichia coli expression system. The antiviral activities of these IFN-α proteins against vesicular stomatitis virus (VSV) and pseudorabies virus (PRV) were examined in PK-15 cells. We found that the antiviral activity of different poIFN-α molecules greatly differed as follows: the poIFN-α14 and 17 subtypes had the greatest antiviral activities against VSV and PRV in PK-15 cells, poIFN-α1, 2, 3, and 8 exhibited lower biological activities, and poIFN-α4, 5, 6, 7, 9, 10, 11, 12, 13, and 16 had minimal or no effect in the tested target cell‒virus systems. Moreover, our studies demonstrated that the antiviral activity of IFN-α was positively correlated with the induction of IFN-stimulated genes, such as 2'-5' oligoadenylate synthetase 1 (OSA1), interferon-stimulated gene 15 (ISG15), myxoma resistance protein 1 (Mx1), and protein kinase R (PKR). Thus, our experimental results provide important information about the antiviral functions and mechanism of poIFN-α.

4.
Appl Radiat Isot ; 192: 110596, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36549179

RESUMEN

Radioactive material inspection in public is important to nuclear safety, and it is also the key security for holding large-scale events, while fast and efficient means of detecting radioactive materials are an important technical guarantee for nuclear safety. In this paper, energy and time distribution characteristics information of the natural background and target nuclide gamma particles are used to improve the sequential background comparison method. By using those energy and time distribution characteristics information, with the half-life and characteristic gamma-ray energy and branching ratio information of the nuclide, the response time and the identification accuracy of extremely low radioactive nuclides detected under natural-radiation background can be improved. Based on the theoretical research, the particle event acquisition device with the LaBr3(Ce) detector was used to carry out the experimental verification, and the results show that, this method can identify 137Cs (characteristic energy of 0.662 MeV,8700 Bq,the position relative to the detector is 30 cm) in 6.2 s, and identify 60Co (characteristic energy of 1.173 MeV and 1.332 MeV, 4500 Bq, the position relative to the detector is 15 cm) in 5.9 s. Experiments prove that the improved background comparison-based sequential Bayesian method can identify low radioactivity radionuclides under natural-radiation background rapidly.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Contaminantes Radiactivos del Suelo , Teorema de Bayes , Contaminantes Radiactivos del Suelo/análisis , Semivida , Radiación de Fondo
5.
Appl Radiat Isot ; 193: 110620, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36566665

RESUMEN

The general sourceless efficiency calibration has two major methods, Monte Carlo simulation and numerical calculation. Monte Carlo simulation as an important method to address the efficiency calibration in complex measurement systems, despite it being highly accurate, but inefficient and time-consuming. And although the numerical calculation is computationally efficient, its accuracy is highly influenced by the multiple Compton scattering of rays in sensitive body, and it is difficult to deal with complex measurement systems. To solve the above problems, this paper proposes a discrete numerical calculation combined with the graphical Boolean operations method for sourceless efficiency calibration. The method starts with a Monte Carlo simulation to obtain the rays deposition process in an infinite sensitive body and record deposition locations as a matrix; then, for different measurement systems, discrete numerical calculations are used to rapidly obtain the transmission process of rays to the sensitive body of the detector; finally, the two are combined to obtain the detection efficiency of the rays by using graphical Boolean operations. For the given two test models, the error between the measured and calculated results of 241Am, 137Cs, 60Co at 60 positions is within -3.61∼9.71%, and the error between the measured and calculated results of the soil source is within -1.27 to 4.26%, indicating that the method has high reliability in sourceless efficiency calibration. And in comparison with Monte Carlo simulations, it is found that the method has a good agreement with Monte Carlo simulation in efficiency calibration and the computational speed has been greatly improved.

6.
Appl Radiat Isot ; 181: 110072, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34968882

RESUMEN

Thermoluminescence (TL) dating is one of the most significant chronological tools used in Quaternary research. However, for changes in the characteristics of quartz, the larger deviation is still a problem in TL dating, especially with the single-aliquot regeneration-does (SAR) procedure. In the SAR-TL protocol, changes in the characteristics of quartz inevitably cause a shift in the TL peak position and a reduction in the sensitivity of the TL peak during repetitive thermal treatment. In this paper, we studied the optimal TL parameters to minimize the effect of the above problems for TL dating. Based on the optimization experiment combining OSL and TL measurements, the optimal preheat temperature was found to be 300 °C for both silt-sized grains and sand-sized grains, which eliminates the remainder of the 325 °C TL signals and inhibits the 375 °C TL peak position shift. Referring to the test does in SAR-OSL dating protocol, the optimal test doses, 200 Gy and 250 Gy for the silt-sized grains and sand-sized grains respectively, were determined to correct the reduction in TL sensitivity, and they were added to improve the SAR-TL protocol. The improved SAR-TL protocol with the optimal measurement parameters, which we called the accurate-parametric SAR-TL protocol, improves the accuracy of quartz TL dating and expands the range of accurate TL dating. For the experimental doses of 400 Gy and 700 Gy, the relative error of De obtained by the accurate-parametric SAR-TL protocol was less than ±5.5% for both silt-sized grains and sand-sized grains. In addition, we discussed the application conditions of the accurate-parametric SAR-TL protocol and the method that obtains the same level of thermal lag for different luminescence measurement equipment.

7.
J Med Microbiol ; 70(10)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34633919

RESUMEN

Antifungal drugs have already been established as an effective treatment option for Candida parapsilosis infections, but there is no universal consensus on the ideal target for clinical efficacy and safety of antifungal drugs for the treatment of C. parapsilosis infections. Few studies have directly compared the efficacies of antifungal drugs for the treatment of C. parapsilosis infections. We hypothesize that different antifungal drugs offer differing clinical efficacy and safety for the treatment of C. parapsilosis infections. We performed a comprehensive network meta-analysis on different strategies for C. parapsilosis infection treatment and compared the clinical efficacy and safety of antifungal drugs as interventions for C. parapsilosis infections. The Cochrane Database of Systematic Reviews, Medline, Embase, PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Technology of Chongqing VIP database, Wan Fang Data, and SinoMed databases were searched to identify appropriate randomized trials. Among the extracted C. parapsilosis cases, the survival and death rates with treatment of C. parapsilosis infection were compared among groups treated with different antifungal drugs. According to the evidence-network analysis, echinocandins were a better choice than other drugs for treating C. parapsilosis infections, and more importantly, caspofungin showed a more preferable effect for decreasing the risk of 30 day mortality. In conclusion, this study systematically evaluated the effectiveness and safety of antifungal drugs for the purpose of helping clinicians choose the most appropriate antifungal drugs. Future studies with larger samples are needed to evaluate the effects of patient factors on the clinical efficacy and safety of antifungal drugs for C. parapsilosis infections.


Asunto(s)
Antifúngicos/uso terapéutico , Candida parapsilosis/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Monitoreo de Drogas , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
8.
Anal Methods ; 13(17): 2037-2043, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33955992

RESUMEN

Baseline correction is an important step in energy-dispersive X-ray fluorescence analysis. The asymmetric least squares method (AsLS), adaptive iteratively reweighted penalized least squares method (airPLS), and asymmetrically reweighted penalized least squares method (arPLS) are widely used to automatically select the data points for the baseline. Considering the parametric sensitivity of the aforementioned methods and the statistical characteristics of the X-ray energy spectrum, this paper proposes an asymmetrically reweighted penalized least squares method based on the Poisson distribution (PD-AsLS) to automatically correct the baseline of X-ray spectra. Monte Carlo (MC) simulation is used to obtain the background spectrum, and PD-AsLS is used to estimate the baseline of the background. The relative error and the absolute error between the simulated background and PD-AsLS estimated background are used to determine the accuracy of PD-AsLS. The correlation coefficient (COR) and the root mean square error (RMSE) between the estmated baseline and the real baseline are calculated, and results of PD-AsLS are compared with results of three other classical methods (arPLS, airPLS and AsLS) to evaluate the reliability of PD-AsLS. The results of PD-AsLS show that the COR is above 0.95 and RMSE is less than 6. The stability and the practicability of PD-AsLS are also evaluated in experiments. A sample is measured five time to get its X-ray energy spectra, and the coefficient of variation (CV) of the estimated baseline is smaller than that of measured spectra. Experiments show that PD-AsLS can estimate baselines better than arPLS without any overestimation. Those results indicate that PD-AsLS can reliably estimate the baselines of X-ray spectra and effectively suppress the statistical fluctuation.

9.
Front Microbiol ; 12: 784974, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975805

RESUMEN

Mucormycosis is an angioinvasive fungal infection, associated with high mortality. The aim of our study was to explore the high-risk factors and predict the death of hematological disease complicated with mucormycosis. We retrospectively analyzed clinical data of 31 patients with hematological disease complicated with mucormycosis, adopted random forest to establish the death prediction model, and validated the model in another 15 patients. The median age of the 31 cases was 46 (28-51) years, male to female ratio 1.38:1, and 90-day mortality rate 54.8%. The most common underlying disease was acute myeloid leukemia (58.1%). The main clinical symptoms were fever (100%), cough (87.1%), sputum (80.6%), chest pain (61.3%), and hemoptysis (19.4%). Reversed halo sign (83.9%) was the most common computed tomography sign. A total of 48.4% of patients also had aspergillus or bacterial infections. Discriminative models were constructed by random forest with 17 non-survivors and 14 survivors. Procalcitonin, the duration of intravenous administration of amphotericin B or amphotericin B liposomes, and neutropenia at death or 90 days of survival were the leading risk factors for poor prognosis, with area under the curve of 0.975 (95% CI 0.934-1). We chose 0.6775 as death prediction threshold (with 82.3% sensitivity and 100% specificity) and validated the model successfully in another 15 patients. Chest pain and reversed halo sign are specific clinical and image signs of hematological disease complicated with mucormycosis. Neutropenia, elevated procalcitonin, and insufficient use time of amphotericin B or amphotericin B liposomes are risk factors for death.

10.
Front Public Health ; 8: 475, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014973

RESUMEN

Certain high-risk factors related to the death of COVID-19 have been reported, however, there were few studies on a death prediction model. This study was conducted to delineate the clinical characteristics of patients with coronavirus disease 2019 (covid-19) of different degree and establish a death prediction model. In this multi-centered, retrospective, observational study, we enrolled 523 COVID-19 cases discharged before February 20, 2020 in Henan Province, China, compared clinical data, screened for high-risk fatal factors, built a death prediction model and validated the model in 429 mild cases, six fatal cases discharged after February 16, 2020 from Henan and 14 cases from Wuhan. Out of the 523 cases, 429 were mild, 78 severe survivors, 16 non-survivors. The non-survivors with median age 71 were older and had more comorbidities than the mild and severe survivors. Non-survivors had a relatively delay in hospitalization, with higher white blood cell count, neutrophil percentage, D-dimer, LDH, BNP, and PCT levels and lower proportion of eosinophils, lymphocytes and albumin. Discriminative models were constructed by using random forest with 16 non-survivors and 78 severe survivors. Age was the leading risk factors for poor prognosis, with AUC of 0.907 (95% CI 0.831-0.983). Mixed model constructed with combination of age, demographics, symptoms, and laboratory findings at admission had better performance (p = 0.021) with a generalized AUC of 0.9852 (95% CI 0.961-1). We chose 0.441 as death prediction threshold (with 0.85 sensitivity and 0.987 specificity) and validated the model in 429 mild cases, six fatal cases discharged after February 16, 2020 from Henan and 14 cases from Wuhan successfully. Mixed model can accurately predict clinical outcomes of COVID-19 patients.


Asunto(s)
COVID-19 , Anciano , China/epidemiología , Humanos , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2
11.
Appl Radiat Isot ; 137: 68-72, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29587161

RESUMEN

The sensitivity calculation of airborne gamma-ray spectrometer (AGS) is usually performed by on-ground or in-flight calibration. However, both methods are cost-ineffective or not permissive, especially for artificial radioisotopes with short half-lives. Alternative to these methods is the Monte Carlo simulation, which has been widely applied over the last few decades. The greatest challenge to the practicability of the Monte Carlo simulation in the AGS calibration is its low computational efficiency for ensuring an acceptable reliability. This article proposes a hybrid numerical method for the sourceless AGS calibration by combining the deterministic point-kernel approach and the Monte Carlo simulation. This method is not only more efficient than the source-based calibration by an empirical method, but also independent of the source availability for on-ground or in-flight calibration. For a given soil test model, AGS sensitivities calculated by this hybrid method agree well with those obtained from the empirical method for the in-flight calibration.

12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(3): 924-8, 2017 Mar.
Artículo en Chino, Inglés | MEDLINE | ID: mdl-30160431

RESUMEN

The X-ray fluorescence well logging technology is a significant method that can make quantitative analysis orsemi-quantitative analysis on the wellface. This method is very important to mineral exploration. The spectrum shifting is often observed in the X-rayfluorescence well logging because the temperature in the well changes acutely. The hardware is used to release the spectrum shifting and the software method is used to rescale the tiny spectrum shifting. There are too manyspectra to be rescaled in a well logging task by manually. In this paper, an auto method to rescale spectrum shifting, via the expert system model which is based on the special process to rescale spectrum shifting in manual, is presented. The symmetric zero-area conversion method, which is not sensitive to the changes of the baseline, is used to research the peaks. And then, the characteristic peaks will be identified by the standard errors, automatically. The prior knowledge (the last energy scale) and the gauss probability density function are used to analyze the peaks qualitatively and confirm the energy of characteristic peaks. Then the least square method is applied energy calibration. The singular deviation point, away from the calibrationline, will be rejected and the energy ratio will be obtained again. This method is applied for rescaling spectrum shifting in 322 spectra and obtains a satisfactory achievement.

13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 838-41, 2016 Mar.
Artículo en Chino | MEDLINE | ID: mdl-27400534

RESUMEN

Aiming at the self-excitation effect on the interference of measurements which exist in the process of Energy dispersive X-ray fluorescence method for uranium measurement. To solve the problem of radioactive isotopes only used as excitation source in determination of uranium. Utilizing the micro X-ray tube to test Self-excitation effect to get a comparison of the results obtained by three different uranium ore samples--109 Cd, 241 Am and Mirco X-ray tube. The results showed that self-excitation effect produced the area measure of characteristic X-ray peak is less than 1% of active condition, also the interference of measurements can be negligible. Photoelectric effect cross-section excited by 109 Cd is higher, corresponding fluorescence yield is higher than excited by 241 Am as well due to characteristics X-ray energy of 109 Cd, 22.11 & 24.95 KeV adjacent to absorption edge energy of L(α), 21.75 KeV, based on the above, excitation efficiency by 109 Cd is higher than 241 Am; The fact that measurement error excited by 241 Am is significantly greater than by 109 Cd is mainly due to peak region overlap between L energy peaks of uranium and Scattering peak of 241 Am, 26.35 keV, These factors above caused the background of measured Spectrum higher; The error between the uranium content in ore samples which the X-ray tube as the excitation source and the chemical analysis results is within 10%. Conclusion: This paper come to the conclusion that the technical quality of uranium measurement used X-ray tube as excitation source is superior to that in radioactive source excitation mode.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 868-73, 2016 Mar.
Artículo en Chino | MEDLINE | ID: mdl-27400540

RESUMEN

Monitoring atmospheric particulate matter requires real-time analysis, such as particulate matter's concentrations, their element types and contents. An analyzer which is based on ß and X rays analysis techniques is designed to meet those demands. Applying ß-ray attenuation law and energy dispersive X-ray fluorescence analysis principle, the paper introduces the analyzer's overall design scheme, structure, FPGA circuit hardware and software for the analyzer. And the analyzer can measure atmospheric particulate matters' concentration, elements and their contents by on-line analysis. Pure elemental particle standard samples were prepared by deposition, and those standard samples were used to set the calibration for the analyzer in this paper. The analyzer can monitor atmospheric particulate matters concentration, 30 kinds of elements and content, such as TSP, PM10 and PM2.5. Comparing the measurement results from the analyzer to Chengdu Environmental Protection Agency's monitoring results for monitoring particulate matters, a high consistency is obtained by the application in eastern suburbs of Chengdu. Meanwhile, the analyzer are highly sensitive in monitoring particulate matters which contained heavy metal elements (such as As, Hg, Cd, Cr, Pb and so on). The analyzer has lots of characteristics through technical performance testing, such as continuous measurement, low detection limit, quick analysis, easy to use and so on. In conclusion, the analyzer can meet the demands for analyzing atmospheric particulate matter's concentration, elements and their contents in urban environmental monitoring.

15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(4): 1235-9, 2016 Apr.
Artículo en Chino | MEDLINE | ID: mdl-30052354

RESUMEN

X-ray tube is the most commonly used equipment in X-ray fluorescence spectrum analysis as excitation source whose primary spectrum has become a major source of the background of X-ray fluorescence spectrum. Background subtraction should go before further analysis of this spectrum. The accuracy of the estimation of the background directly affect the results of subsequent processing steps. In this paper, the tube excitation component of X fluorescence spectrum is analyzed with an estimation method of background intensity against their background characteristics, and structuring theoretical spectral lines based on the measured spectral lines in order to evaluate the effect of spectral processing algorithms. The method utilizes the measured X-ray fluorescence spectrum which does not contain the characteristic peak of the spectrum, In order to estimate the composition of the original spectrum of the X-ray tube. It uses the spectrum that contains the continuous background for interpolating the entire measured spectrum, thereby avoiding overlapping the spectral characteristic peaks or improperly estimating full width at half maximum. This paper compared SNIP, Fourier transform method and the background subtraction method using the measured spectral lines. Using this method to estimate the background is closer to the theoretical background. The results showe that the method for X-ray fluorescence spectrum by X-ray tube excitation is accurate in this article, this method can be used to deduct continuous background, and good applied effectiveness has been achieved in the background subtraction of the actually measured X-ray fluorescence spectrometry.

16.
PLoS One ; 10(3): e0119033, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25816025

RESUMEN

BACKGROUND: IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide. In recent years, consistent efforts have been made to develop new non-invasive biomarkers for IgAN progression. In our previous in vitro study we found mesangial derived CXCL1 as a contributor for kidney injury, and observed higher urinary CXCL1 levels in patients with IgAN. It implied that the urinary CXCL1 might be a potential biomarker. METHODS: In the present study, we enrolled 425 IgAN patients with follow-up data and detected their urinary CXCL1 levels at the time of renal biopsy, to explore the predictive value of urinary CXCL1 in IgAN progression. Urinary CXCL1 levels were measured using enzyme-linked immunosorbent assay. RESULTS: Urinary CXCL1 levels were associated with presently well established predictors of IgAN progression, including SBP (r = 0.138, p = 0.004), DBP (r = 0.114, p = 0.019), proteinuria (r = 0.155, p = 0.001), eGFR (r = -0.259, p<0.001) and tubular atrophy and interstitial fibrosis (r = 0.181, p<0.001). After adjusted for them, higher levels of urinary CXCL1 were independently associated with a greater risk of deterioration in renal function (HR, per s.d. increment of natural log-transformed CXCL1: 1.748; 95% CI: 1.222-2.499, P = 0.002). Furthermore, time-dependent receiver operating characteristic (ROC) curve showed that urinary CXCL1, when combined with proteinuria and eGFR, could enhance the prognostic value of these traditional predictors for IgAN progression. CONCLUSIONS: The results in our present study suggested urinary CXCL1 as a new non-invasive predictor of IgAN progression.


Asunto(s)
Quimiocina CXCL1/orina , Progresión de la Enfermedad , Glomerulonefritis por IGA/diagnóstico , Glomerulonefritis por IGA/orina , Adulto , Femenino , Humanos , Masculino , Pronóstico
17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 2034-7, 2015 Jul.
Artículo en Chino | MEDLINE | ID: mdl-26717774

RESUMEN

The X-ray Fluorescence Analysis(XRFA) is an important and efficient method on the element anylsis and is used in geology, industry and environment protection. But XRFA has a backdraw that the determination limit and accuracy are effected by the matrix of the sample. Now the fundamental parameter is usually used to calculate the content of elements in XRFA, and it is an efficient method if the matrix and net area of characteristic X-ray peak are obtained. But this is invalide in in-stu XRFA. Also the method of net area and the "black material" of sample are the key point of the fundamental parameter method when the Energy Dispersive X-ray Fluorescence Analysis(EDXRFA) method is used in the low content sample. In this paper a advanced fundamental parameter method is discussed. The advanced fundamental parameter method includes the spectra analysis and the fundamental parameter method, which inserts the overlapping peaks separation method into the iteration process of the fundamental parameter method. The advanced method can resolve the net area and the quantitative analysis. The advanced method is used to analyse the standard sample. Compare to the content obtained from the coefficient method, the precision of Cu, Ni and Zn is better than coeffieciency method. The result shows that the advanced method could improve the precision of the EDXRFA, so the advanced method is better than the coefficient method.

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(10): 2891-4, 2015 Oct.
Artículo en Chino | MEDLINE | ID: mdl-26904839

RESUMEN

The miniature transmission X-ray tube is widely used in energy dispersive X-ray Fluorescence Analysis (EDXRFA). The miniature transmission X-ray tube with a small, low power consumption, X-ray emission efficiency that can be made the excitation source of handheld X-ray energy dispersive fluorescence analyzer. Beryllium (Be) is the most commonly used X-ray window material. But beryllium is expensive and toxic. At the same time set filtering window by aluminum (Al) to reducing low-energy scattering rays. This paper be adopted Al for exit window material of miniature transmission X-ray tube, achieve high-energy rays transmission and low-energy scattered radiation shielding, at the same time reduce production cost and difficulty. The present paper simulate the X-ray tube output spectrum of silver (Ag) target and aluminum window with different thickness by MCNP5. We consider the X-ray of low energy part is completely shielded when aluminum windows thickness is greater than 1.5 mm. We can conclude that 2 µm and 0.8 mm are the best combination of target thickness and aluminum windows through comparative analysis of existing research results. Then we can get flux of high energy part is big and low energy part is small when the target is 2 µm thick Ag and the window is 0.8 mm thick Al.

19.
Inflammation ; 37(5): 1895-901, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24854162

RESUMEN

Acute kidney injury-induced organ fibrosis is recognized as a major risk factor for the development of chronic kidney disease, which remains one of the leading causes of death in the developed world. However, knowledge on molecules that may suppress the fibrogenic response after injury is lacking. The long pentraxin 3 (PTX3), a novel acute renal injury marker, has been reported to be involved in chronic renal injury, but the mechanism is still unknown. In this experiment, the mice subjected to acute kidney injury showed a slow recovery of kidney function compared with PTX3-treated animals. Collagen expression was absent in sham-operated kidneys; however, their expression was significantly increased after reperfusion. And, these changes were reduced in PTX3-treated mouse kidney. Fibrosis was associated with increased expression of IL-6 and extensive activation of Stat3. Administration of IL-6 increased collagen I expression and Stat3 activation in vitro in renal epithelial cells subjected to hypoxia-reoxygenation, which was suppressed by PTX3. Furthermore, we found that the decreased serum creatinine level and the reduced expression of collagen and smooth muscle actin induced by PTX3 were abolished by additional administration of IL-6. The associated p-Stat3 expression which was reduced by PTX3 administration was also inverted by additional IL-6 treatment. Our data suggest that PTX3 inhibits acute renal injury-induced interstitial fibrosis through suppression of IL-6/Stat3 pathway.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Proteína C-Reactiva/uso terapéutico , Interleucina-6/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Componente Amiloide P Sérico/uso terapéutico , Transducción de Señal/efectos de los fármacos , Animales , Proteína C-Reactiva/farmacología , Células Cultivadas , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/metabolismo , Componente Amiloide P Sérico/farmacología , Transducción de Señal/fisiología
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(2): 562-4, 2014 Feb.
Artículo en Chino | MEDLINE | ID: mdl-24822440

RESUMEN

In the energy dispersive X-ray fluorescence spectrum analysis, scintillation detector such as NaI (Tl) detector usually has a low energy resolution at around 8%. The low energy resolution causes problems in spectral data analysis especially in the high background and low counts condition, it is very limited to strip the overlapped spectrum, and the more overlapping the peaks are, the more difficult to peel the peaks, and the qualitative and quantitative analysis can't be carried out because we can't recognize the peak address and peak area. Based on genetic algorithm and immune algorithm, we build a new racial algorithm which uses the Euclidean distance as the judgment of evolution, the maximum relative error as the iterative criterion to be put into overlapped spectrum analysis, then we use the Gaussian function to simulate different overlapping degrees of the spectrum, and the racial algorithm is used in overlapped peak separation and full spectrum simulation, the peak address deviation is in +/- 3 channels, the peak area deviation is no more than 5%, and it is proven that this method has a good effect in energy dispersive X-ray fluorescence overlapped spectrum analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...