Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.324
Filtrar
1.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746287

RESUMEN

Viral infection induces production of type I interferons and expression of interferon-stimulated genes (ISGs) that play key roles in inhibiting viral infection. Here, we show that the ISG guanylate-binding protein 5 (GBP5) inhibits N-linked glycosylation of key proteins in multiple viruses, including SARS-CoV-2 spike protein. GBP5 binds to accessory subunits of the host oligosaccharyltransferase (OST) complex and blocks its interaction with the spike protein, which results in misfolding and retention of spike protein in the endoplasmic reticulum likely due to decreased N -glycan transfer, and reduces the assembly and release of infectious virions. Consistent with these observations, pharmacological inhibition of the OST complex with NGI-1 potently inhibits glycosylation of other viral proteins, including MERS-CoV spike protein, HIV-1 gp160, and IAV hemagglutinin, and prevents the production of infectious virions. Our results identify a novel strategy by which ISGs restrict virus infection and provide a rationale for targeting glycosylation as a broad antiviral therapeutic strategy. Highlights: The interferon-stimulated gene GBP5 is induced by SARS-CoV-2 infection in vitro and in vivo.ER-localized GBP5 restricts N-linked glycosylation of SARS-CoV-2 spike protein, leading to protein misfolding and preventing transport to the Golgi apparatus.GBP5 binds to OST complex accessory proteins and potentially blocks access of the catalytic subunit to the spike protein.GBP5 inhibits N-glycosylation of key proteins in multiple viruses, including SARS-CoV-2Pharmacological inhibition of OST blocks host cell infection by SARS-CoV-2, variants of concern, HIV-1, and IAV. Significance: Viral infection induces production of type I interferons and expression of interferon-stimulated genes (ISGs) that play key roles in inhibiting viral infection. We found that the interferon-stimulated gene GBP5 is induced by SARS-CoV-2 infection in vitro and in vivo. GBP5 inhibits N-glycosylation of key proteins in multiple viruses, including SARS-CoV-2. Importantly, pharmacological inhibition of Oligosaccharyltransferase (OST) Complex blocks host cell infection by SARS-CoV-2, variants of concern, HIV-1, and IAV, indicating future translational application of our findings.

2.
Histol Histopathol ; : 18753, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712806

RESUMEN

BACKGROUND: Berberine is an active compound found in different herbs used in Chinese medicine and is well-known for its potential anticancer properties. The study aimed to figure out the role of berberine in regulating the malignant behavior of laryngeal squamous cell carcinoma (LSCC) cells. METHODS: LSCC cell lines (SNU-899 and AMC-HN-8) were treated with different concentrations of berberine (0-200 µM) to determine its cytotoxicity. The migration, invasion, and apoptosis of LSCC cells were measured by wound healing assays, Transwell assays, and flow cytometry. Western blot was performed for the quantification of proteins involved in PI3K/AKT/mTOR signaling. RESULTS: The viability of LSCC cells was dose-dependently reduced by berberine. Berberine dampened LSCC cell migration and invasion while augmenting cell apoptosis, as evidenced by a reduced wound closure rate, a decrease in invaded cell number, and a surge in cell apoptosis in the context of berberine stimulation. Importantly, the effects of berberine on the cancer cell process were enhanced by LY294002 (an inhibitor for PI3K) treatment. Moreover, the protein levels of phosphorylated PI3K, AKT, and mTOR were markedly reduced in response to berberine treatment. CONCLUSION: Berberine inhibits cell viability, migration, and invasion but augments cell apoptosis by inactivating PI3K/AKT/mTOR signaling in LSCC.

3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38711371

RESUMEN

T-cell receptor (TCR) recognition of antigens is fundamental to the adaptive immune response. With the expansion of experimental techniques, a substantial database of matched TCR-antigen pairs has emerged, presenting opportunities for computational prediction models. However, accurately forecasting the binding affinities of unseen antigen-TCR pairs remains a major challenge. Here, we present convolutional-self-attention TCR (CATCR), a novel framework tailored to enhance the prediction of epitope and TCR interactions. Our approach utilizes convolutional neural networks to extract peptide features from residue contact matrices, as generated by OpenFold, and a transformer to encode segment-based coded sequences. We introduce CATCR-D, a discriminator that can assess binding by analyzing the structural and sequence features of epitopes and CDR3-ß regions. Additionally, the framework comprises CATCR-G, a generative module designed for CDR3-ß sequences, which applies the pretrained encoder to deduce epitope characteristics and a transformer decoder for predicting matching CDR3-ß sequences. CATCR-D achieved an AUROC of 0.89 on previously unseen epitope-TCR pairs and outperformed four benchmark models by a margin of 17.4%. CATCR-G has demonstrated high precision, recall and F1 scores, surpassing 95% in bidirectional encoder representations from transformers score assessments. Our results indicate that CATCR is an effective tool for predicting unseen epitope-TCR interactions. Incorporating structural insights enhances our understanding of the general rules governing TCR-epitope recognition significantly. The ability to predict TCRs for novel epitopes using structural and sequence information is promising, and broadening the repository of experimental TCR-epitope data could further improve the precision of epitope-TCR binding predictions.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Humanos , Epítopos/química , Epítopos/inmunología , Biología Computacional/métodos , Redes Neurales de la Computación , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Antígenos/química , Antígenos/inmunología , Secuencia de Aminoácidos
5.
Sci Bull (Beijing) ; 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38693017

RESUMEN

The term "Holocene temperature conundrum" refers to the inconsistencies between proxy-based reconstructions and transient model simulations, and it challenges our understanding of global temperature evolution during the Holocene. Climate reconstructions indicate a cooling trend following the Holocene Thermal Maximum, while model simulations indicate a consistent warming trend due to ice-sheet retreat and rising greenhouse gas concentrations. Various factors, such as seasonal biases and overlooked feedback processes, have been proposed as potential causes for this discrepancy. In this study, we examined the impact of vegetation-climate feedback on the temperature anomaly patterns in East Asia during the mid-Holocene (∼6 ka). By utilizing the fully coupled Earth system model EC-Earth and performing simulations with and without coupled dynamic vegetation, our objective was to isolate the influence of vegetation changes on regional temperature patterns. Our findings reveal that vegetation-climate feedback contributed to warming across most of East Asia, resulting in spatially diverse temperature changes during the mid-Holocene and significantly improved model-data agreement. These results highlight the crucial role of vegetation-climate feedback in addressing the Holocene temperature conundrum and emphasize its importance for simulating accurate climate scenarios.

6.
Front Med (Lausanne) ; 11: 1348733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690175

RESUMEN

Objective: To investigate the predictors of clinical pregnancy and live birth rate in patients with recurrent embryo implantation failure (RIF) treated with in vitro fertilization-embryo transfer (IVF-ET) technique. Method: This retrospective cohort study was conducted in Jinjiang District Maternal and Child Health Hospital, Chengdu City, Sichuan Province, China. Patients were recruited who were enrolled at this hospital between November 1, 2019 and August 31, 2022, and who met the following criteria: a frozen embryo transfer (FET) at day 5 or 6 blastocyst stage was performed and the number of transfer cycles was not less than two. We collected information on age, height, weight, number of embryo transfer cycles, and information related to clinical outcomes. We used the group of patients who underwent ERA testing as the study group and those who underwent FET only as the control group, and matched baseline characteristics between the two groups by propensity score to make them comparable. We compared the differences in clinical outcomes between the two groups and further explored predictors of pregnancy and live birth using survival analysis and COX regression modeling. Results: The success rate of clinical pregnancy in RIF patients was 50.74% and the live birth rate was 33.09%. Patients in the FET group were less likely to achieve clinical pregnancy compared to the ERA group (HR = 0.788, 95%CI 0.593-0.978, p < 0.05). Patients with >3 previous implantation failures had a lower probability of achieving a clinical pregnancy (HR = 0.058, 95%CI 0.026-0.128, p < 0.05) and a lower likelihood of a live birth (HR = 0.055, 95%CI 0.019-0.160, p < 0.05), compared to patients with ≤3 previous implantation failures. Patients who had two embryos transferred were more likely to achieve a clinical pregnancy (HR = 1.357, 95%CI 1.079-1.889, p < 0.05) and a higher likelihood of a live birth (HR = 1.845, 95%CI 1.170-2.910, p < 0.05) than patients who had a single embryo transfer. Patients with concomitant high-quality embryo transfer were more likely to achieve a clinical pregnancy compared to those without high-quality embryo transfer (HR = 1.917, 95%CI 1.225-1.863, p < 0.05). Conclusion: Not receiving an ERA, having >3 previous implantation failures, using single embryo transfer and not transferring quality embryos are predictors for clinical pregnancy in patients with RIF. Having>3 previous implantation failures and using single embryo transfer were predictors for live birth in patients with RIF.

7.
Inorg Chem ; 63(19): 8775-8781, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38696247

RESUMEN

The atomic precision of the subnanometer nanoclusters has provided sound proof on the structural correlation of metal complexes and larger-sized metal nanoparticles. Herein, we report the synthesis, crystallography, structural characterization, electrochemistry, and optical properties of a 133-atom intermetallic nanocluster protected by 57 thiolates (3-methylbenzenethiol, abbreviated as m-MBTH) and 3 chlorides, with the formula of Ag125Cu8(m-MBT)57Cl3. This is the largest Ag-Cu bimetallic cluster ever reported. Crystallographic analysis revealed that the nanocluster has a three-layer concentric core-shell structure, Ag7@Ag47@Ag71Cu8S57Cl3, and the Ag54 metal kernel adopts a D5h symmetry. The nuclei number is between that of the previously reported large silver cluster [Ag136(SR)64Cl3Ag0.45]- and the large silver-rich cluster Au130-xAgx(SR)55 (x = 98). All these three clusters bear a similar metallic core structure, while the main structural difference lies in the shell motif structures. Electron counting revealed an open electron shell with 73 delocalized electrons, which was verified by the electron paramagnetic resonance analysis. The DPV electrochemical measurement indicates a multielectron state quantization double-layer charging shape and single-electron sequential charging and discharging characteristic of the AgCu alloy cluster. In addition, the open-hole Z-scan test reveals the nonlinear optical absorption (2-3 optical absorption in the NIR-II/III region) of Ag125Cu8 nanoclusters.

8.
Water Sci Technol ; 89(7): 1725-1740, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619899

RESUMEN

The algal-bacterial shortcut nitrogen removal (ABSNR) process can be used to treat high ammonia strength wastewaters without external aeration. However, prior algal-bacterial SNR studies have been conducted under fixed light/dark periods that were not representative of natural light conditions. In this study, laboratory-scale photo-sequencing batch reactors (PSBRs) were used to treat anaerobic digester sidestream under varying light intensities that mimicked summer and winter conditions in Tampa, FL, USA. A dynamic mathematical model was developed for the ABSNR process, which was calibrated and validated using data sets from the laboratory PSBRs. The model elucidated the dynamics of algal and bacterial biomass growth under natural illumination conditions as well as transformation processes for nitrogen species, oxygen, organic and inorganic carbon. A full-scale PSBR with a 1.2 m depth, a 6-day hydraulic retention time (HRT) and a 10-day solids retention time (SRT) was simulated for treatment of anaerobic digester sidestream. The full-scale PSBR could achieve >90% ammonia removal, significantly reducing the nitrogen load to the mainstream wastewater treatment plant (WWTP). The dynamic simulation showed that ABSNR process can help wastewater treatment facilities meet stringent nitrogen removal standards with low energy inputs.


Asunto(s)
Amoníaco , Nitrógeno , Nitrógeno/análisis , Desnitrificación , Estaciones del Año , Reactores Biológicos/microbiología , Aguas Residuales
9.
Quant Imaging Med Surg ; 14(4): 2762-2773, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617146

RESUMEN

Background: The preoperative pathological diagnosis of rectal lesions is crucial for formulating treatment plans. For subepithelial lesions (SELs) and larger lesions with necrosis of the rectum, endoscopic forceps biopsy (EFB) cannot provide an accurate pathological diagnosis in most cases. By comparing the efficacy and safety of transrectal contrast-enhanced ultrasound-guided transperineal core-needle biopsy (TRCEUS-TP-CNB) and EFB, this study explored the value of TRCEUS-TP-CNB in the diagnosis of complex rectal lesions, such as SELs. Methods: A retrospective, cross-sectional study was conducted with 32 consecutive patients with complex rectal lesions admitted to our hospital from May 2016 to June 2022. Clinical, ultrasound, and pathological data were collected from these patients who underwent EFB followed by TRCEUS-TP-CNB. Results: The success rate of EFB was 21.88% (7/32) and that of TRCEUS-TP-CNB was 93.75% (30/32). No significant complications were observed for either biopsy method. Factors affecting the success rate of EFB included the lesion width (cm) (1.90±0.62 vs. 4.26±2.40, P<0.001) and lesion thickness (cm) (1.29±0.51 vs. 2.96±1.75, P<0.001). The success rate of TRCEUS-TP-CNB was not affected by these factors. In the paired study of TRCEUS-TP-CNB and EFB, the times of samples per person (1 vs. 2.14±0.90, P=0.015), number of specimens per sample (8.27±1.93 vs. 3.31±1.67, P<0.001), lesion width (cm) (3.79±2.42 vs. 1.90±0.62, P=0.001), and lesion thickness (cm) (2.64±1.75 vs. 1.29±0.51, P=0.001) were the factors affecting the difference of the sampling success rate. In the SELs, the success rate of EFB was 10% (1/10) and that of TRCEUS-TP-CNB was 100% (10/10), and the difference between the two groups was statistically significant (P=0.004). Conclusions: TRCEUS-TP-CNB is an effective biopsy method for complex rectal lesions. The success rate of EFB is lower in the larger lesions. Compared with EFB, TRCEUS-TP-CNB required fewer times of samples be taken and obtained more specimens. For larger lesions and SELs of the rectum, TRCEUS-TP-CNB is expected to become one of the preferred biopsy methods.

10.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1549-1557, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621938

RESUMEN

The dichloromethane fraction of Kadsura heteroclita roots was separated and purified by chromatographic techniques(e.g., silica gel, Sephadex LH-20, ODS, MCI column chromatography) and semi-preparative HPLC. Twenty compounds were isolated from K. heteroclita, and their structures were identified by NMR, MS, UV, and X-ray single crystal diffraction techniques. Twenty compounds were isolated from K. heteroclita, which were identified as xuetongdilactone G(1), mallomacrostin C(2), 3,4-seco(24Z)-cychmrt-4(28),24-diene-3,26-dioic acid 3-methyl ester(3), nigranoic acid(4), methyl ester schizanlactone E(5), schisandronic acid(6), heteroclic acid(7), wogonin(8),(2R,3R)-4'-O-methyldihydroquercetin(9), 15,16-bisnor-13-oxo-8(17),11E-labdadien-19-oic acid(10), stigmast-4-ene-6ß-ol-3-one(11), psoralen(12),(1R,2R,4R)-trihydroxy-p-menthane(13), homovanillyl alcohol(14), 2-(4-hydroxyphenyl)-ethanol(15), coniferaldehyde(16),(E)-7-(4-hydroxy-3-methoxyphenyl)-7-methylbut-8-en-9-one(17), acetovanillone(18), vanillic acid(19) and vanillin(20). Compound 1 is a new compound named xuetongdilactone G. Compounds 2-3 and 8-20 are isolated from K. heteroclita for the first time.


Asunto(s)
Kadsura , Kadsura/química , Espectroscopía de Resonancia Magnética , Raíces de Plantas/química , Ésteres/análisis
11.
iScience ; 27(4): 109469, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38577101

RESUMEN

The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.

12.
PLoS One ; 19(4): e0300524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635805

RESUMEN

To address the need for multivalent vaccines against Coronaviridae that can be rapidly developed and manufactured, we compared antibody responses against SARS-CoV, SARS-CoV-2, and several variants of concern in mice immunized with mRNA-lipid nanoparticle vaccines encoding homodimers or heterodimers of SARS-CoV/SARS-CoV-2 receptor-binding domains. All vaccine constructs induced robust anti-RBD antibody responses, and the heterodimeric vaccine elicited an IgG response capable of cross-neutralizing SARS-CoV, SARS-CoV-2 Wuhan-Hu-1, B.1.351 (beta), and B.1.617.2 (delta) variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Humanos , SARS-CoV-2/genética , Vacunas Combinadas , Anticuerpos Neutralizantes , Nanovacunas , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/prevención & control , ARN Mensajero/genética , Vacunas de ARNm , Lípidos , Anticuerpos Antivirales
13.
PLoS Pathog ; 20(4): e1012147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38620039

RESUMEN

Post-transcriptional regulation by small RNAs and post-translational modifications (PTM) such as lysine acetylation play fundamental roles in physiological circuits, offering rapid responses to environmental signals with low energy consumption. Yet, the interplay between these regulatory systems remains underexplored. Here, we unveil the cross-talk between sRNAs and lysine acetylation in Streptococcus mutans, a primary cariogenic pathogen known for its potent acidogenic virulence. Through systematic overexpression of sRNAs in S. mutans, we identified sRNA SmsR1 as a critical player in modulating acidogenicity, a key cariogenic virulence feature in S. mutans. Furthermore, combined with the analysis of predicted target mRNA and transcriptome results, potential target genes were identified and experimentally verified. A direct interaction between SmsR1 and 5'-UTR region of pdhC gene was determined by in vitro binding assays. Importantly, we found that overexpression of SmsR1 reduced the expression of pdhC mRNA and increased the intracellular concentration of acetyl-CoA, resulting in global changes in protein acetylation levels. This was verified by acetyl-proteomics in S. mutans, along with an increase in acetylation level and decreased activity of LDH. Our study unravels a novel regulatory paradigm where sRNA bridges post-transcriptional regulation with post-translational modification, underscoring bacterial adeptness in fine-tuning responses to environmental stress.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Procesamiento Proteico-Postraduccional , Streptococcus mutans , Animales , Acetilación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Caries Dental/microbiología , Caries Dental/metabolismo , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN Pequeño no Traducido/metabolismo , ARN Pequeño no Traducido/genética , Streptococcus mutans/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/patogenicidad , Virulencia , Femenino , Ratas
14.
Plant Commun ; : 100856, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431772

RESUMEN

Actinidia arguta, the most widely distributed Actinidia species and the second cultivated species in the genus, can be distinguished from the currently cultivated Actinidia chinensis on the basis of its small and smooth fruit, rapid softening, and excellent cold tolerance. Adaptive evolution of tetraploid Actinidia species and the genetic basis of their important agronomic traits are still unclear. Here, we generated a chromosome-scale genome assembly of an autotetraploid male A. arguta accession. The genome assembly was 2.77 Gb in length with a contig N50 of 9.97 Mb and was anchored onto 116 pseudo-chromosomes. Resequencing and clustering of 101 geographically representative accessions showed that they could be divided into two geographic groups, Southern and Northern, which first diverged 12.9 million years ago. A. arguta underwent two prominent expansions and one demographic bottleneck from the mid-Pleistocene climate transition to the late Pleistocene. Population genomics studies using paleoclimate data enabled us to discern the evolution of the species' adaptation to different historical environments. Three genes (AaCEL1, AaPME1, and AaDOF1) related to flesh softening were identified by multi-omics analysis, and their ability to accelerate flesh softening was verified through transient expression assays. A set of genes that characteristically regulate sexual dimorphism located on the sex chromosome (Chr3) or autosomal chromosomes showed biased expression during stamen or carpel development. This chromosome-level assembly of the autotetraploid A. arguta genome and the genes related to important agronomic traits will facilitate future functional genomics research and improvement of A. arguta.

15.
Eur J Med Chem ; 269: 116270, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38490062

RESUMEN

Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.


Asunto(s)
Proteínas Cullin , Ubiquitina-Proteína Ligasas , Humanos , Proteínas Cullin/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo
16.
Front Neurol ; 15: 1362648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450069

RESUMEN

Rhabdomyolysis (RM) induced by electric blankets is exceedingly rare, with only three cases identified in our literature review. Both RM and Guillain-Barré syndrome (GBS) present with similar clinical manifestations of myalgia and muscle weakness, posing a potential challenge for accurate diagnosis in clinical settings. This report presents the case of a 22-year-old man who developed RM subsequent to the use of an electric blanket. Despite undergoing plasma exchange and renal replacement therapy, the patient continued to exhibit poor muscle strength in both lower limbs. Subsequent comprehensive evaluation revealed the presence of concurrent GBS. Following a 5-day course of intravenous gamma globulin treatment, the patient experienced rapid recovery of muscle strength and was discharged. Additionally, we reviewed seven cases from the literature of coexistent RM and GBS. This indicated that investigation of the timing of onset of muscle strength decline in RM patients could help to identify potential concurrent neurological or muscular disorders. In cases in which concurrent GBS and RM cannot be definitively ascertained during early hospitalization, prioritizing plasma exchange treatment may lead to improved patient outcomes.

17.
Perioper Med (Lond) ; 13(1): 17, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461276

RESUMEN

STUDY OBJECTIVES: To assess whether preoperative dexmedetomidine (DEX) nasal drips combined with conventional treatment could mitigate the occurrence of postoperative delirium (POD). DESIGN: A prospective randomised controlled study. SETTING: The cardiac surgery intensive care unit (CSICU) and patient hospitalisation ward at a university hospital. PARTICIPANTS: A total of 100 patients (aged ≥60 years) undergoing cardiac surgery at a university hospital between 7 January 2022, and 30 November 2022 met the eligibility criteria and were included in the study. INTERVENTIONS: Patients with sleep disorders (Pittsburgh Sleep Quality Index ≥8) were divided into two groups: Group A (the placebo group, n=50), receiving a short-term preoperative placebo combined with conventional treatment and Group B (the DEX group, n=50), receiving short-term preoperative DEX combined with conventional treatment. MEASUREMENTS AND RESULTS: The Confusion Assessment Method for the ICU (CAM-ICU) was used for POD assessment in the CSICU, while the CAM was employed to assess delirium in the patient ward. Group B demonstrated a reduced incidence of POD compared to Group A (12% vs. 30%, odds ratio: 0.318, 95% confidence interval: 0.112-0.905, p=0.027). CONCLUSION: The combined treatment involving DEX demonstrated a decreased incidence of POD in elderly individuals with sleep disorders undergoing cardiac surgery compared to the placebo combination treatment. TRIAL REGISTRATION: URL: www.chictr.org.cn with registration number ChiCTR 2100043968, registered on 06/03/2021.

18.
Bioresour Technol ; 399: 130562, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460560

RESUMEN

The two-sludge anoxic dephosphation (DEPHANOX) process frequently encounters the challenge of elevated effluent ammonia levels in practical applications. In this study, the anaerobic ammonium oxidation (anammox) biofilm was introduced into the DEPHANOX system, transforming it into a three-sludge system, enabling synchronous nitrogen and phosphorus elimination, particularly targeting ammonia. Despite a chemical oxygen demand/total nitrogen ratio of 4.3 ± 0.8 in the actual municipal wastewater and 4.5 h of aeration, the effluent total nitrogen was 13.7 mg/L, lower than the parallel wastewater treatment plant. Additionally, the effluent ammonia reduced to 5.1 ± 2.5 mg/L. Notably, denitrifying phosphorus removal and anammox were coupled in the anoxic zone, yielding 74.5 % nitrogen and 87.8 % phosphorus removal. 16S rRNA gene sequencing identified denitrifying phosphorus-accumulating organisms primarily in floc sludge (Saprospiraceae 7.07 %, Anaerolineaceae 1.95 %, Tetrasphaera 1.57 %), while anammox bacteria inhabited the biofilm (Candidatus Brocadia 4.00 %). This study presents a novel process for efficiently treating municipal wastewater.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Aguas Residuales , Aguas del Alcantarillado/microbiología , Amoníaco , Anaerobiosis , Fósforo , ARN Ribosómico 16S/genética , Desnitrificación , Reactores Biológicos/microbiología , Oxidación-Reducción , Nitrógeno
19.
Inorg Chem ; 63(14): 6231-6238, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38529948

RESUMEN

As potential low-cost alternatives of traditional bulk HgCdTe crystals, HgTe colloidal quantum dots (CQDs) synthesized through reactions between HgCl2 and trioctylphosphine-telluride in hot oleylamine have shown promising performances in mid-wave infrared photodetectors. Tetrapodic or tetrahedral HgTe CQDs have been obtained by tuning the reaction conditions such as temperature, reaction time, concentrations, and ratios of the two precursors. However, the principles governing the growth dynamics and the mechanism behind the transitions between tetrapodic and tetrahedral HgTe CQDs have not been sufficiently understood. In this work, synthesis of HgTe CQDs through bilateral injection is introduced to study the growth mechanism. It suggests that tetrahedral HgTe CQDs usually result from the breaks of tetrapodic HgTe CQDs after their legs grow thick enough. The fundamental factor determining whether the growth makes their legs longer or thicker is the effective concentration of the Te precursor during the growth, rather than temperature, Hg-rich environment, or reactivity of precursors. A chemical model is proposed to illustrate the principles governing the growth dynamics, which provides valuable guidelines for tuning the material properties of HgTe CQDs according to the needs of applications.

20.
Environ Pollut ; 347: 123731, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458519

RESUMEN

Bisphenol A (BPA), an ingredient in consumer products, has been suggested that it can interfere with bone development and maintenance, whereas the molecule mechanism remains unclear. The objective of this study is to investigate the effect of BPA on early bone differentiation and metabolism, and its potential molecule mechanism by employing hFOB1.19 cell as an in vitro model, as well as larval zebrafish as an in vivo model. The in vitro experiments indicated that BPA decreased cell viability, inhibited osteogenic activity (such as ALP, RUNX2), increased ROS production, upregulated transcriptional or protein levels of apoptosis-related molecules (such as Caspase 3, Caspase 9), while suppressed transcriptional or protein levels of pyroptosis-specific markers (TNF-α, TNF-ß, IL-1ß, ASC, Caspase 1, and GSDMD). Moreover, the evidences from in vivo model demonstrated that exposure to BPA distinctly disrupted pharyngeal cartilage, craniofacial bone development, and retarded bone mineralization. The transcriptional level of bone development-related genes (bmp2, dlx2a, runx2, and sp7), apoptosis-related genes (bcl2), and pyroptosis-related genes (cas1, nlrp3) were significantly altered after treating with BPA in zebrafish larvae. In summary, our study, combining in vitro and in vivo models, confirmed that BPA has detrimental effects on osteoblast activity and bone development. These effects may be due to the promotion of apoptosis, the initiation of oxidative stress, and the inhibition of pyroptosis.


Asunto(s)
Compuestos de Bencidrilo , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Fenoles , Pez Cebra , Animales , Pez Cebra/metabolismo , Osteoblastos/metabolismo , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...