Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 176: 228-240, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34260898

RESUMEN

Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a serious complication after long-term or excess administration of clinical glucocorticoids intervention, and the pathogenic mechanisms underlying have not been clarified yet. Oxidative stress is considered as a major cause of bone homeostasis disorder. This study is aimed to explore the potential relevance between SIRT3 and GIONFH, as well as the effect of resveratrol, which has been reported for its role in SIRT3 activation, on dexamethasone-induced oxidative stress and mitochondrial compromise in bone marrow stem cells (BMSCs). In this study, our data showed that SIRT3 level was declined in GIONFH rat femoral head, corresponding to a resultant decrease of SIRT3 expression in dexamethasone-treated BMSCs in vitro. We also found that dexamethasone could result in oxidative injury in BMSCs, and resveratrol treatment reduced this deleterious effect via a SIRT3-dependent manner. Moreover, our results demonstrated that rewarding effect of resveratrol on BMSCs osteogenic differentiation was via activation of AMPK/PGC-1α/SIRT3 axis. Meanwhile, resveratrol administration prevented the occurrence of GIONFH, enhanced SIRT3 expression and reduced oxidative level in GIONFH model rats. Therefore, our study provides basic evidence that SIRT3 may be a promising therapeutic target for GIONFH treatment and resveratrol could be an ideal agent for clinical uses.


Asunto(s)
Osteonecrosis , Sirtuina 3 , Animales , Cabeza Femoral/metabolismo , Glucocorticoides/toxicidad , Osteogénesis , Osteonecrosis/metabolismo , Estrés Oxidativo , Ratas , Sirtuina 3/genética , Sirtuina 3/metabolismo
2.
Stem Cell Res Ther ; 12(1): 108, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541442

RESUMEN

BACKGROUND: Bone fracture repair has gained a lot of attention due to the high incidence of delayed union or even nonunion especially in osteoporotic patients, resulting in a dreadful impact on the quality of life. However, current therapies involve the costly expense and hence become unaffordable strategies for fracture recovery. Herein, developing new strategies for better bone repair is essential and urgent. Catalpol treatment has been reported to attenuate bone loss and promote bone formation. However, the mechanisms underlying its effects remain unraveled. METHODS: Rat bone marrow mesenchymal stem cells (BMSCs) were isolated from rat femurs. BMSC osteogenic ability was assessed using ALP and ARS staining, immunofluorescence, and western blot analysis. BMSC-mediated angiogenic potentials were determined using the western blot analysis, ELISA testing, scratch wound assay, transwell migration assay, and tube formation assay. To investigate the molecular mechanism, the lentivirus transfection was used. Ovariectomized and sham-operated rats with calvaria defect were analyzed using micro-CT, H&E staining, Masson's trichrome staining, microfil perfusion, sequential fluorescent labeling, and immunohistochemistry assessment after administrated with/without catalpol. RESULTS: Our results manifested that catalpol enhanced BMSC osteoblastic differentiation and promoted BMSC-mediated angiogenesis in vitro. More importantly, this was conducted via the JAK2/STAT3 pathway, as knockdown of STAT3 partially abolished beneficial effects in BMSCs. Besides, catalpol administration facilitated bone regeneration as well as vessel formation in an OVX-induced osteoporosis calvarial defect rat model. CONCLUSIONS: The data above showed that catalpol could promote osteogenic ability of BMSC and BMSC-dependent angiogenesis through activation of the JAK2/STAT3 axis, suggesting it may be an ideal therapeutic agent for clinical medication of osteoporotic bone fracture.


Asunto(s)
Células Madre Mesenquimatosas , Osteoporosis , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Glucósidos Iridoides , Osteogénesis , Osteoporosis/tratamiento farmacológico , Calidad de Vida , Ratas , Factor de Transcripción STAT3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...