Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39136056

RESUMEN

Eukaryotic elongation factor 1A1 (EEF1A1), originally identified for its role in protein synthesis, has additional functions in diverse cellular processes. Of note, we previously discovered a role for EEF1A1 in hepatocyte lipotoxicity. We also demonstrated that a two-week intervention with the EEF1A1 inhibitor didemnin B (DB) (50 µg/kg) decreased liver steatosis in a mouse model of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) (129S6/SvEvTac mice fed western diet (42% fat) for 26 weeks). Here, we further characterized hepatic changes occurring in these mice by assessing lipid droplet (LD) size, bulk differential expression, and cell type-associated alterations in gene expression. Consistent with the previously demonstrated decrease in hepatic steatosis, we observed decreased median LD size in response to DB. Bulk RNA-seq followed by gene set enrichment analysis revealed alterations in pathways related to energy metabolism and proteostasis in DB-treated mouse livers. Deconvolution of bulk data identified decreased cell-type association scores for cholangiocytes, mononuclear phagocytes, and mesenchymal cells in response to DB. Overrepresentation analyses of bulk data using cell type marker gene sets further identified hepatocytes and cholangiocytes as the primary contributors to bulk differential expression in response to DB. Thus, we show that chemical inhibition of EEF1A1 decreases hepatic LD size and decreases gene expression signatures associated with several liver cell types implicated in MASLD progression. Furthermore, changes in hepatic gene expression were primarily attributable to hepatocytes and cholangiocytes. This work demonstrates that EEF1A1 inhibition may be a viable strategy to target aspects of liver biology implicated in MASLD progression.

2.
Res Sq ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39108471

RESUMEN

Evidence shows that ultra-high dose-rate FLASH-radiotherapy (FLASH-RT) protects against normal tissue complications and functional decrements in the irradiated brain. Past work has shown that radiation-induced cognitive impairment, neuroinflammation and reduced structural complexity of granule cell neurons were not observed to the same extent after FLASH-RT (> MGy/s) compared to conventional dose-rate (CONV, 0.1 Gy/s) delivery. To explore the sensitivity of different neuronal populations to cranial irradiation and dose-rate modulation, hippocampal CA1 and medial prefrontal cortex (PFC) pyramidal neurons were analyzed by electron and confocal microscopy. Neuron ultrastructural analyses by electron microscopy after 10 Gy FLASH- or CONV-RT exposures indicated that irradiation had little impact on dendritic complexity and synapse density in the CA1, but did increase length and head diameter of smaller non-perforated synapses. Similarly, irradiation caused no change in PFC prelimbic/infralimbic axospinous synapse density, but reductions in non-perforated synapse diameters. While irradiation resulted in thinner myelin sheaths compared to controls, none of these metrics were dose-rate sensitive. Analysis of fluorescently labeled CA1 neurons revealed no radiation-induced or dose-rate-dependent changes in overall dendritic complexity or spine density, in contrast to our past analysis of granule cell neurons. Super-resolution confocal microscopy following a clinical dosing paradigm (3×10Gy) showed significant reductions in excitatory vesicular glutamate transporter 1 and inhibitory vesicular GABA transporter puncta density within the CA1 that were largely dose-rate independent. Collectively, these data reveal that, compared to granule cell neurons, CA1 and mPFC neurons are more radioresistant irrespective of radiation dose-rate.

3.
Eur J Radiol ; 178: 111593, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38981178

RESUMEN

PURPOSE: The aim of the study is to perform a systematic review and meta-analysis comparing the diagnostic performance of artificial intelligence (AI) and human readers in the detection of wrist fractures. METHOD: This study conducted a systematic review following PRISMA guidelines. Medline and Embase databases were searched for relevant articles published up to August 14, 2023. All included studies reported the diagnostic performance of AI to detect wrist fractures, with or without comparison to human readers. A meta-analysis was performed to calculate the pooled sensitivity and specificity of AI and human experts in detecting distal radius, and scaphoid fractures respectively. RESULTS: Of 213 identified records, 20 studies were included after abstract screening and full-text review. Nine articles examined distal radius fractures, while eight studies examined scaphoid fractures. One study included distal radius and scaphoid fractures, and two studies examined paediatric distal radius fractures. The pooled sensitivity and specificity for AI in detecting distal radius fractures were 0.92 (95% CI 0.88-0.95) and 0.89 (0.84-0.92), respectively. The corresponding values for human readers were 0.95 (0.91-0.97) and 0.94 (0.91-0.96). For scaphoid fractures, pooled sensitivity and specificity for AI were 0.85 (0.73-0.92) and 0.83 (0.76-0.89), while human experts exhibited 0.71 (0.66-0.76) and 0.93 (0.90-0.95), respectively. CONCLUSION: The results indicate comparable diagnostic accuracy between AI and human readers, especially for distal radius fractures. For the detection of scaphoid fractures, the human readers were similarly sensitive but more specific. These findings underscore the potential of AI to enhance fracture detection accuracy and improve clinical workflow, rather than to replace human intelligence.

4.
Antioxidants (Basel) ; 13(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39061857

RESUMEN

Coronary artery disease (CAD) and myocardial infarction (MI) remain leading causes of death and disability worldwide. CAD begins with the formation of atherosclerotic plaques within the intimal layer of the coronary arteries, a process driven by persistent arterial inflammation and oxidation. Myeloperoxidase (MPO), a mammalian haem peroxidase enzyme primarily expressed within neutrophils and monocytes, has been increasingly recognised as a key pro-inflammatory and oxidative enzyme promoting the development of vulnerable coronary atherosclerotic plaques that are prone to rupture, and can precipitate a MI. Mounting evidence also implicates a pathogenic role for MPO in the inflammatory process that follows a MI, which is characterised by the rapid infiltration of activated neutrophils into the damaged myocardium and the release of MPO. Excessive and persistent cardiac inflammation impairs normal cardiac healing post-MI, resulting in adverse cardiac outcomes and poorer long-term cardiac function, and eventually heart failure. This review summarises the evidence for MPO as a significant oxidative enzyme contributing to the inappropriate inflammatory responses driving the progression of CAD and poor cardiac healing after a MI. It also details the proposed mechanisms underlying MPO's pathogenic actions and explores MPO as a novel therapeutic target for the treatment of unstable CAD and cardiac damage post-MI.

5.
Med Image Anal ; 97: 103231, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38941858

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.

6.
Can J Ophthalmol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38901468

RESUMEN

OBJECTIVE: Because of increased evidence for safety and increased demands, there appears to be a recent adoption and endorsement of immediate sequential bilateral cataract surgery (ISBCS). This study aims to determine whether a paradigm shift has occurred in the delivery of cataract surgery in the province of Ontario and its the extent, if any, and to analyze the current role of ISBCS. DESIGN: Retrospective health records analysis. METHODS: We analyzed aggregate Ontario Health Insurance Plan claim counts for cataract surgeries between 2016 and 2022, categorizing cases into unilateral, ISBCS, and delayed sequential bilateral cataract surgery (DSBCS) cases. We examined trends, compared wait times for second surgeries in the DSBCS cohort with wait times for first surgeries, and used previously published cost estimates for ISBCS to estimate annual savings in Ontario. RESULTS: There were 1,122 ISBCS cases in 2016, which increased sixfold during the pandemic (2020-2021) and further increased to 11,876 cases in 2022. Unilateral and DSBCS cases decreased during the pandemic but rebounded in 2022 to 102% and 153% of baseline, respectively. ISBCS increased from 1% to 10%, unilateral cases decreased from 41% to 29% of total cases, and DSBCS increased from 58% to 61%. Median wait for patients' first and second surgeries increased from 65 to 87 days and 28 to 33 days, respectively. Using estimates, ISBCS saved approximately $19 million in 2022. CONCLUSION: Our study demonstrates a paradigm shift in Ontario in favour of ISBCS. ISBCS also may be a strategy to reduce increasing wait times while saving health care system dollars.

7.
Bioengineering (Basel) ; 11(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38391628

RESUMEN

Distal outflow bleb-forming procedures in ophthalmic surgery expose subconjunctival tissue to inflammatory cytokines present in the aqueous humor, resulting in impaired outflow and, consequently, increased intraocular pressure. Clinically, this manifests as an increased risk of surgical failure often necessitating revision. This study (1) introduces a novel high-throughput screening platform for testing potential anti-fibrotic compounds and (2) assesses the clinical viability of modulating the transforming growth factor beta-SMAD2/3 pathway as a key contributor to post-operative outflow reduction, using the signal transduction inhibitor verteporfin. Human Tenon's capsule fibroblasts (HTCFs) were cultured within a 3D collagen matrix in a microfluidic system modelling aqueous humor drainage. The perfusate was augmented with transforming growth factor beta 1 (TGFß1), and afferent pressure to the tissue-mimetic was continuously monitored to detect treatment-related pressure elevations. Co-treatment with verteporfin was employed to evaluate its capacity to counteract TGFß1 induced pressure changes. Immunofluorescent studies were conducted on the tissue-mimetic to corroborate the pressure data with cellular changes. Introduction of TGFß1 induced treatment-related afferent pressure increase in the tissue-mimetic. HTCFs treated with TGFß1 displayed visibly enlarged cytoskeletons and stress fiber formation, consistent with myofibroblast transformation. Importantly, verteporfin effectively mitigated these changes, reducing both afferent pressure increases and cytoskeletal alterations. In summary, this study models the pathological filtration bleb response to TGFß1, while demonstrating verteporfin's effectiveness in ameliorating both functional and cellular changes caused by TGFß1. These demonstrate modulation of the aforementioned pathway as a potential avenue for addressing post-operative changes and reductions in filtration bleb outflow capacity. Furthermore, the establishment of a high-throughput screening platform offers a valuable pre-animal testing tool for investigating potential compounds to facilitate surgical wound healing.

8.
J Am Chem Soc ; 146(1): 106-111, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38128915

RESUMEN

Incorporating exactly one monomer at a defined position during a chain polymerization is exceptionally challenging due to the statistical nature of monomer addition. Herein, photoinduced electron/energy transfer (PET) enables the incorporation of exactly one vinyl ether into polyacrylates synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Near-quantitative addition (>96%) of a single vinyl ether is achieved while retaining >99% of the thiocarbonylthio chain ends. Kinetic studies reveal that performing the reactions at 2 °C limits unwanted chain breaking events. Finally, the syntheses of diblock copolymers are reported where molecular weights and dispersities are well-controlled on either side of the vinyl ether. Overall, this report introduces an approach to access acrylic copolymers containing exactly one chemical handle at a defined position, enabling novel macromolecular architectures to probe structure-function properties, introduce sites for de/reconstruction, store information, etc.

10.
Nature ; 624(7992): 639-644, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37871613

RESUMEN

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant, BA.2.86, has emerged and spread to numerous countries worldwide, raising alarm because its spike protein contains 34 additional mutations compared with its BA.2 predecessor1. We examined its antigenicity using human sera and monoclonal antibodies (mAbs). Reassuringly, BA.2.86 was no more resistant to human sera than the currently dominant XBB.1.5 and EG.5.1, indicating that the new subvariant would not have a growth advantage in this regard. Importantly, sera from people who had XBB breakthrough infection exhibited robust neutralizing activity against all viruses tested, suggesting that upcoming XBB.1.5 monovalent vaccines could confer added protection. Although BA.2.86 showed greater resistance to mAbs to subdomain 1 (SD1) and receptor-binding domain (RBD) class 2 and 3 epitopes, it was more sensitive to mAbs to class 1 and 4/1 epitopes in the 'inner face' of the RBD that is exposed only when this domain is in the 'up' position. We also identified six new spike mutations that mediate antibody resistance, including E554K that threatens SD1 mAbs in clinical development. The BA.2.86 spike also had a remarkably high receptor affinity. The ultimate trajectory of this new SARS-CoV-2 variant will soon be revealed by continuing surveillance, but its worldwide spread is worrisome.


Asunto(s)
Epítopos de Linfocito B , Receptores Virales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Epítopos de Linfocito B/inmunología , Inmunogenicidad Vacunal , Mutación , Receptores Virales/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sueros Inmunes/inmunología
11.
Radiother Oncol ; 188: 109906, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690668

RESUMEN

BACKGROUND AND PURPOSE: The impact of radiotherapy (RT) at ultra high vs conventional dose rate (FLASH vs CONV) on the generation and repair of DNA double strand breaks (DSBs) is an important question that remains to be investigated. Here, we tested the hypothesis as to whether FLASH-RT generates decreased chromosomal translocations compared to CONV-RT. MATERIALS AND METHODS: We used two FLASH validated electron beams and high-throughput rejoin and genome-wide translocation sequencing (HTGTS-JoinT-seq), employing S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs) in HEK239T cells, to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated after various irradiation doses, dose rates and oxygen tensions (normoxic, 21% O2; physiological, 4% O2; hypoxic, 2% and 0.5% O2). Electron irradiation was delivered using a FLASH capable Varian Trilogy and the eRT6/Oriatron at CONV (0.08-0.13 Gy/s) and FLASH (1x102-5x106 Gy/s) dose rates. Related experiments using clonogenic survival and γH2AX foci in the 293T and the U87 glioblastoma lines were also performed to discern FLASH-RT vs CONV-RT DSB effects. RESULTS: Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Furthermore, RT dose rate modality on U87 cells did not change γH2AX foci numbers at 1- and 24-hours post-irradiation nor did this affect 293T clonogenic survival. CONCLUSION: Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.

12.
J Biol Chem ; 299(10): 105238, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690687

RESUMEN

Matriptase-2 (MT2), encoded by TMPRSS6, is a membrane-anchored serine protease. It plays a key role in iron homeostasis by suppressing the iron-regulatory hormone, hepcidin. Lack of functional MT2 results in an inappropriately high hepcidin and iron-refractory iron-deficiency anemia. Mt2 cleaves multiple components of the hepcidin-induction pathway in vitro. It is inhibited by the membrane-anchored serine protease inhibitor, Hai-2. Earlier in vivo studies show that Mt2 can suppress hepcidin expression independently of its proteolytic activity. In this study, our data indicate that hepatic Mt2 was a limiting factor in suppressing hepcidin. Studies in Tmprss6-/- mice revealed that increases in dietary iron to ∼0.5% were sufficient to overcome the high hepcidin barrier and to correct iron-deficiency anemia. Interestingly, the increased iron in Tmprss6-/- mice was able to further upregulate hepcidin expression to a similar magnitude as in wild-type mice. These results suggest that a lack of Mt2 does not impact the iron induction of hepcidin. Additional studies of wild-type Mt2 and the proteolytic-dead form, fMt2S762A, indicated that the function of Mt2 is to lower the basal levels of hepcidin expression in a manner that primarily relies on its nonproteolytic role. This idea is supported by the studies in mice with the hepatocyte-specific ablation of Hai-2, which showed a marginal impact on iron homeostasis and no significant effects on iron regulation of hepcidin. Together, these observations suggest that the function of Mt2 is to set the basal levels of hepcidin expression and that this process is primarily accomplished through a nonproteolytic mechanism.

14.
Cancer Res Commun ; 3(4): 725-737, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37377749

RESUMEN

Implementation of ultra-high dose-rate FLASH radiotherapy (FLASH-RT) is rapidly gaining traction as a unique cancer treatment modality able to dramatically minimize normal tissue toxicity while maintaining antitumor efficacy compared with standard-of-care radiotherapy at conventional dose rate (CONV-RT). The resultant improvements in the therapeutic index have sparked intense investigations in pursuit of the underlying mechanisms. As a preamble to clinical translation, we exposed non-tumor-bearing male and female mice to hypofractionated (3 × 10 Gy) whole brain FLASH- and CONV-RT to evaluate differential neurologic responses using a comprehensive panel of functional and molecular outcomes over a 6-month follow-up. In each instance, extensive and rigorous behavioral testing showed FLASH-RT to preserve cognitive indices of learning and memory that corresponded to a similar protection of synaptic plasticity as measured by long-term potentiation (LTP). These beneficial functional outcomes were not found after CONV-RT and were linked to a preservation of synaptic integrity at the molecular (synaptophysin) level and to reductions in neuroinflammation (CD68+ microglia) throughout specific brain regions known to be engaged by our selected cognitive tasks (hippocampus, medial prefrontal cortex). Ultrastructural changes in presynaptic/postsynaptic bouton (Bassoon/Homer-1 puncta) within these same regions of the brain were not found to differ in response to dose rate. With this clinically relevant dosing regimen, we provide a mechanistic blueprint from synapse to cognition detailing how FLASH-RT reduces normal tissue complications in the irradiated brain. Significance: Functional preservation of cognition and LTP after hypofractionated FLASH-RT are linked to a protection of synaptic integrity and a reduction in neuroinflammation over protracted after irradiation times.


Asunto(s)
Potenciación a Largo Plazo , Enfermedades Neuroinflamatorias , Masculino , Ratones , Femenino , Animales , Plasticidad Neuronal , Hipofraccionamiento de la Dosis de Radiación
15.
Proc Natl Acad Sci U S A ; 120(12): e2203352120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36927151

RESUMEN

Lineage-tracing technologies based on Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9 (CRISPR-Cas9) genome editing have emerged as a powerful tool for investigating development in single-cell contexts, but exact reconstruction of the underlying clonal relationships in experiment is complicated by features of the data. These complications are functions of the experimental parameters in these systems, such as the Cas9 cutting rate, the diversity of indel outcomes, and the rate of missing data. In this paper, we develop two theoretically grounded algorithms for the reconstruction of the underlying single-cell phylogenetic tree as well as asymptotic bounds for the number of recording sites necessary for exact recapitulation of the ground truth phylogeny at high probability. In doing so, we explore the relationship between the problem difficulty and the experimental parameters, with implications for experimental design. Lastly, we provide simulations showing the empirical performance of these algorithms and showing that the trends in the asymptotic bounds hold empirically. Overall, this work provides a theoretical analysis of phylogenetic reconstruction in single-cell CRISPR-Cas9 lineage-tracing technologies.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Filogenia , Linaje de la Célula/genética , Proteína 9 Asociada a CRISPR/genética
16.
Sci Rep ; 13(1): 3702, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879030

RESUMEN

Plasmonic and phase transition has been blended to gain the infrared radiative switching which is tunable with temperature or voltage supply. This is applied via vanadium dioxide, tungsten trioxide, and molybdenum trioxide as transition metal oxides (TMO). The metallic phase at high temperature or colored state contributes in magnetic polariton (MP) excitation, producing broad absorptance. The TMO-based sub-layer is integrated underneath the grating fully supporting MP resonance. In contrast, this underlayer leads to producing the narrowband absorptance originated from concept of zero contrast grating (ZCG). The zero gradient in refractive index at the output plane of the grating cause transmission of light in broad wavelength range. With introduction of reflective silver underlayer, those transmitted through the grating are reflected back. However, there exists the near-zero narrowband transmission peaks in ZCG. This undergoes transformation to narrowband absorptance. In addition, another absorptance peak can be induced due to phonon modes at insulating phase. The MP resonance at metallic phase is characterized with inductor-capacitor (LC) circuit and the narrowband absorptance peaks are characterized with phase shift from the Fabry-Perot round trip (FP-RT) eigenequation from high contrast grating (HCG). The work expands the usage of transition metal oxides in infrared region with larger contrast.

17.
J Am Heart Assoc ; 12(4): e027600, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36789837

RESUMEN

Excessive inflammation and impaired healing of cardiac tissue following a myocardial infarction (MI) can drive the development of heart failure. Cardiac repair begins immediately after the onset of MI and continues for months. The repair process can be divided into the following 3 overlapping phases, each having distinct functions and sequelae: the inflammatory phase, the proliferative phase, and the maturation phase. Macrophages, neutrophils, and lymphocytes are present in the myocardium throughout the repair process and govern the duration and function of each of these phases. However, changes in the functions of these cell types across each phase are poorly characterized. Numerous immunomodulatory therapies that specifically target inflammation have been developed for promoting cardiac repair and preventing heart failure after MI. However, these treatments have been largely unsuccessful in large-scale clinical randomized controlled trials. A potential explanation for this failure is the lack of a thorough understanding of the time-dependent evolution of the functions of immune cells after a major cardiovascular event. Failure to account for this temporal plasticity in cell function may reduce the efficacy of immunomodulatory approaches that target cardiac repair. This review is concerned with how the functions of different immune cells change with time following an MI. Improved understanding of the temporal changes in immune cell function is important for the future development of effective and targeted treatments for preventing heart failure after MI.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Humanos , Miocardio/metabolismo , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/metabolismo , Reperfusión , Inflamación/metabolismo , Remodelación Ventricular/fisiología
18.
Stem Cell Reports ; 17(11): 2451-2466, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36270283

RESUMEN

Maintaining corneal health and transparency are necessary pre-requisites for exquisite vision, a function ascribed to stem cells (SCs) nestled within the limbus. Perturbations to this site or depletion of its SCs results in limbal SC deficiency. While characterizing a murine model of this disease, we discovered unusual transformation phenomena on the corneal surface including goblet cell metaplasia (GCM), conjunctival transdifferentiation, and squamous metaplasia (SQM). GCM arose from K8+ differentiated conjunctival epithelial cells when the limbus was breached and was exacerbated by neovascularization. Regions within the cornea that harbored newly transformed K12+ epithelia were void of blood vessels and GCs, suggesting that the cornea also initiated a self-repair program. Knowledge of the intrinsic circuits that contribute to cell identity change in lineage-restricted epithelia will be invaluable for designing new therapeutics for patients with blinding corneal disease.


Asunto(s)
Enfermedades de la Córnea , Epitelio Corneal , Limbo de la Córnea , Humanos , Ratones , Animales , Transdiferenciación Celular , Modelos Animales de Enfermedad , Células Madre , Metaplasia
19.
Microbiol Spectr ; 10(4): e0196922, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35938806

RESUMEN

Mycobacterium tuberculosis is a highly specialized human pathogen. The success of M. tuberculosis is due to its ability to replicate within host macrophages, resist host immune responses, and ultimately enter a persistent state during a latent tuberculosis infection. Understanding how M. tuberculosis adapts to and replicates in the intracellular environment of the host is crucial for the development of novel, targeted therapeutics. We report the characterization of an M. tuberculosis mutant lacking Rv3249c, a TetR transcriptional regulator. We show that Rv3249c directly represses the adjacent alkB-rubA-rubB operon encoding an alkane hydroxylase/rubredoxin system. For consistency with related systems, we have named the rv3249c gene alkX. The alkX mutant survived better than wild-type M. tuberculosis inside macrophages. This could be phenocopied by overexpression of the alkB-rubA-rubB locus. We hypothesized that the improved intracellular survival phenotype is a result of increased fitness of the mutant; however, we found that the alkX mutant had a defect when grown on some host-associated carbon sources in vitro. We also found that the alkX mutant had a defect in biofilm formation, also linked to the overexpression of the alkB-rubAB genes. Combined, these results define the primary role of AlkX as a transcriptional repressor of the alkB-rubAB operon and suggest the operon contributes to intracellular survival of the pathogen. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is the leading cause of death worldwide due to a single infectious agent. It is important to understand how M. tuberculosis adapts to and replicates in the intracellular environment of the host. In this study, we characterized the TetR transcriptional regulator Rv3249c and show that it regulates a highly conserved alkane hydroxylase/rubredoxin system. Our data demonstrate that the AlkBRubAB system contributes to the success of the bacterium in host macrophages.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Proteínas Bacterianas/genética , Biopelículas , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo , Humanos , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Rubredoxinas/genética , Tuberculosis/microbiología
20.
Sci Rep ; 12(1): 11654, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803963

RESUMEN

As AI models continue to advance into many real-life applications, their ability to maintain reliable quality over time becomes increasingly important. The principal challenge in this task stems from the very nature of current machine learning models, dependent on the data as it was at the time of training. In this study, we present the first analysis of AI "aging": the complex, multifaceted phenomenon of AI model quality degradation as more time passes since the last model training cycle. Using datasets from four different industries (healthcare operations, transportation, finance, and weather) and four standard machine learning models, we identify and describe the main temporal degradation patterns. We also demonstrate the principal differences between temporal model degradation and related concepts that have been explored previously, such as data concept drift and continuous learning. Finally, we indicate potential causes of temporal degradation, and suggest approaches to detecting aging and reducing its impact.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA