Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Microbiol ; 15: 1358085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716171

RESUMEN

The objective of this experiment was to investigate the effects of Lactobacillus plantarum and molasses on the nutrient composition, fermentation quality, bacterial count, aerobic stability, and microflora of alfalfa silage in sandy grasslands. The experimental treatments included control (CK), 106 CFU/g Lactobacillus plantarum (L), 5% molasses (M), and 106 CFU/g Lactobacillus plantarum + 5% molasses (LM). The nutrient composition, fermentation quality, bacterial count, aerobic stability, and microflora were determined after 14 days and 56 days of ensiling, respectively. The results showed that the addition of L, M, and LM reduced dry matter loss (DM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) content, and increased water-soluble carbohydrates (WSC) and ether extract (EE) content, compared to the CK group. Meanwhile, more lactic acid (LA) and accelerated fermentation were observed, causing the pH value to drop below 4.5 in the L, M, and LM groups after 56 days of ensiling. The addition of L, M, and LM promoted lactic acid bacteria (LAB), and inhibited yeast. The addition of L significantly increased the content of acetic acid (AA). In terms of microflora, the addition of L, M, and LM made Firmicutes become the dominant bacterial phylum earlier, while Lactobacillus, Weissella, and Pediococcus had a higher abundance. According to the result of Pearson's correlation, there is a very significant negative correlation between pH value and Lactobacillus (P < 0.01) and a very significant positive correlation between pH value and Lactococcus, Enterobacter, Enterococcus, and Leuconostoc (P < 0.01), which may be inhibited by Lactobacillus under the decreased pH value. The results of the prediction of microbial genes indicated that the addition of M could enhance the carbohydrate metabolism and membrane transport metabolism, which may contribute to LA production by LAB metabolism. In general, L, M and LM all improved the fermentation quality and reduced the loss of nutrients to varying degrees, but considering the fermentation quality, the overall effects of M and LM were better than L. M and LM are recommended to be used as silage additives in the process of alfalfa silage in sandy grasslands to improve the quality.

2.
Front Vet Sci ; 11: 1366314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577544

RESUMEN

The present study assessed the effects of oligosaccharide-chelated organic trace minerals (OTM) on the growth performance, digestive enzyme activity, blood parameters, slaughter performance, and meat quality indexes of mutton sheep. A total of 60 East Ujumuqin × small-tailed Han crossbred mutton sheep were assigned to two groups (10 duplicates per group) by body weight (26.12 ± 3.22 kg) according to a completely randomized design. Compared to the CON group, the results of the OTM group showed: (1) no significant changes in the initial body weight, final body weight, dry matter intake, average daily gain, and feed conversion ratio (p > 0.05); (2) the activities of trypsin, lipase, and amylase in the jejunum were significantly increased (p < 0.05); (3) serum total protein, albumin, and globulin of the blood were significantly increased (p < 0.05), and the growth factor interleukin IL-10 was significantly higher (p < 0.05), while IL-2, IL-6, and γ-interferon were significantly lower (p < 0.05). Immunoglobulins A, M, and G were significantly higher (p < 0.05); (4) the live weight before slaughter, carcass weights, dressing percentage, eye muscle areas, and GR values did not differ significantly (p > 0.05); (5) shear force of mutton was significantly lower (p < 0.05), while the pH45min, pH24h, drip loss, and cooking loss did not show a significant difference (p > 0.05). The content of crude protein was significantly higher (p < 0.05), while the ether extract content was significantly reduced (p < 0.05), but no significant difference was detected between moisture and ash content; (6) the total amino acids, essential amino acids, semi-essential amino acids, and umami amino acids were significantly increased (p < 0.05). Although umami amino acids were not significant, the total volume increased (p > 0.05). Among these, the essential amino acids, threonine, valine, leucine, lysine in essential amino acids and arginine were significantly increased (p < 0.05). Also, non-essential amino acids, glycine, serine, proline, tyrosine, cysteine, and aspartic acid, were significantly higher (p < 0.05). The content of alanine, aspartate, glutamic acid, phenylalanine, and tyrosine in umami amino acids was significantly higher (p < 0.05).

3.
Antiviral Res ; 227: 105890, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657838

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic bunyavirus with a fatality rate of up to 40%. Currently, there are no licensed antiviral drugs for the treatment of CCHF; thus, the World Health Organization (WHO) listed the disease as a priority. A unique viral transcription initiation mechanism called "cap-snatching" is shared by influenza viruses and bunyaviruses. Thus, we tested whether baloxavir (an FDA-approved anti-influenza drug that targets the "cap-snatching" mechanism) could inhibit CCHFV infection. In cell culture, baloxavir acid effectively inhibited CCHFV infection and targeted CCHFV RNA transcription/replication. However, it has weak oral bioavailability. Baloxavir marboxil (the oral prodrug of baloxavir) failed to protect mice against a lethal dose challenge of CCHFV. To solve this problem, baloxavir sodium was synthesized owing to its enhanced aqueous solubility and pharmacokinetic properties. It consistently and significantly improved survival rates and decreased tissue viral loads. This study identified baloxavir sodium as a novel scaffold structure and mechanism of anti-CCHF compound, providing a promising new strategy for clinical treatment of CCHF after further optimization.

4.
J Neural Eng ; 21(2)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572924

RESUMEN

Objective. Artificial nerve scaffolds composed of polymers have attracted great attention as an alternative for autologous nerve grafts recently. Due to their poor bioactivity, satisfactory nerve repair could not be achieved. To solve this problem, we introduced extracellular matrix (ECM) to optimize the materials.Approach.In this study, the ECM extracted from porcine nerves was mixed with Poly(L-Lactide-co-ϵ-caprolactone) (PLCL), and the innovative PLCL/ECM nerve repair conduits were prepared by electrostatic spinning technology. The novel conduits were characterized by scanning electron microscopy (SEM), tensile properties, and suture retention strength test for micromorphology and mechanical strength. The biosafety and biocompatibility of PLCL/ECM nerve conduits were evaluated by cytotoxicity assay with Mouse fibroblast cells and cell adhesion assay with RSC 96 cells, and the effects of PLCL/ECM nerve conduits on the gene expression in Schwann cells was analyzed by real-time polymerase chain reaction (RT-PCR). Moreover, a 10 mm rat (Male Wistar rat) sciatic defect was bridged with a PLCL/ECM nerve conduit, and nerve regeneration was evaluated by walking track, mid-shank circumference, electrophysiology, and histomorphology analyses.Main results.The results showed that PLCL/ECM conduits have similar microstructure and mechanical strength compared with PLCL conduits. The cytotoxicity assay demonstrates better biosafety and biocompatibility of PLCL/ECM nerve conduits. And the cell adhesion assay further verifies that the addition of ECM is more beneficial to cell adhesion and proliferation. RT-PCR showed that the PLCL/ECM nerve conduit was more favorable to the gene expression of functional proteins of Schwann cells. Thein vivoresults indicated that PLCL/ECM nerve conduits possess excellent biocompatibility and exhibit a superior capacity to promote peripheral nerve repair.Significance.The addition of ECM significantly improved the biocompatibility and bioactivity of PLCL, while the PLCL/ECM nerve conduit gained the appropriate mechanical strength from PLCL, which has great potential for clinical repair of peripheral nerve injuries.


Asunto(s)
Matriz Extracelular , Nervio Ciático , Animales , Masculino , Ratones , Ratas , Regeneración Nerviosa/fisiología , Poliésteres/química , Ratas Wistar , Nervio Ciático/fisiología , Electricidad Estática , Porcinos , Andamios del Tejido/química
5.
J Environ Manage ; 358: 120936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38652989

RESUMEN

Manure replacing synthetic fertilizer is a viable practice to ensure crop yield and increase soil organic carbon (SOC), but its impact on greenhouse gas (GHG) emissions is inconsistent, thus remains its effect on CF unclear. In this study, a 7-year field experiment was conducted to assess the impact of replacing synthetic fertilizer with manure on crop productivity, SOC sequestration, GHG emissions and crop CF under winter wheat-summer maize cropping system. Five treatments were involved: synthetic nitrogen, phosphorus, and potassium fertilizer (NPK) and 25%, 50%, 75%, and 100% of manure replacing synthetic N (25%M, 50%M, 75%M, and 100%M). Compared with NPK treatment, 25%M and 50%M treatments maintained annual yield (winter wheat plus summer maize) and sustainable yield index (SYI), but 75%M and 100%M treatments significantly decreased annual yield, and 100%M treatment also significantly reduced annual SYI. The SOC content exhibited a significant increasing trend over years in all treatments. After 7 years, SOC storage in manure treatments increased by 3.06-11.82 Mg ha-1 relative to NPK treatment. Manure treatments reduced annual GHG emissions by 14%-60% over NPK treatment. The CF of the cropping system ranged from 0.16 to 0.39 kg CO2 eq kg-1 of grain without considering SOC sequestration, in which the CF of manure treatments lowered by 18%-58% relative to NPK treatment. When SOC sequestration was involved in, the CF varied from -0.39 to 0.37 kg CO2 eq kg-1 of grain, manure treatments significantly reduced the CF by 22%-208% over NPK treatment. It was concluded that replacing 50% of synthetic fertilizer with manure was a sound option for achieving high crop yield and SYI but low CF under the tested cropping system.


Asunto(s)
Huella de Carbono , Fertilizantes , Estiércol , Suelo , Triticum , Zea mays , Zea mays/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Suelo/química , Carbono , Estaciones del Año , Nitrógeno , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Gases de Efecto Invernadero
6.
Antioxidants (Basel) ; 13(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38671941

RESUMEN

Fetal and neonatal exposures to perinatal oxidative stress (OS) are key mediators of bronchopulmonary dysplasia (BPD). To characterize these exposures, adductomics is an exposure science approach that captures electrophilic addition products (adducts) in blood protein. Adducts are bound to the nucleophilic cysteine loci of human serum albumin (HSA), which has a prolonged half-life. We conducted targeted and untargeted adductomics to test the hypothesis that adducts of OS vary with BPD. We studied 205 preterm infants (≤28 weeks) and 51 full-term infants from an ongoing birth cohort. Infant plasma was collected at birth (cord blood), 1-week, 1-month, and 36-weeks postmenstrual age. HSA was isolated from plasma, trypsin digested, and analyzed using high-performance liquid chromatography-mass spectrometry to quantify previously annotated (known) and unknown adducts. We identified 105 adducts in cord and postnatal blood. A total of 51 known adducts (small thiols, direct oxidation products, and reactive aldehydes) were increased with BPD. Postnatally, serial concentrations of several known OS adducts correlated directly with supplemental oxygen exposure. The application of large-scale adductomics elucidated OS-mediated pathways of BPD. This is the first study to investigate the "neonatal-perinatal exposome" and to identify oxidative stress-related exposure biomarkers that may inform antioxidant strategies to protect the health of future generations of infants.

7.
Biomater Sci ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687002

RESUMEN

Intestine damage is an acute abdominal disease that usually requires emergency sealing. However, traditional surgical suture not only causes secondary damage to the injured tissue, but also results in adhesion with other tissues in the abdominal cavity. To this end, a thermally reversible injectable gelatin-based hydrogel adhesive (GTPC) is constructed by introducing transglutaminase (TGase) and proanthocyanidins (PCs) into a gelatin system. By reducing the catalytic activity of TGase, the density of covalent and hydrogen bond crosslinking in the hydrogel can be regulated to tune the sol-gel transition temperature of gelatin-based hydrogels above the physiological temperature (42 °C) without introducing any synthetic small molecules. The GTPC hydrogel exhibits good tissue adhesion, antioxidant, and antibacterial properties, which can effectively seal damaged intestinal tissues and regulate the microenvironment of the damaged site, promoting tissue repair and regeneration. Intriguingly, temperature-induced hydrogen bond disruption and reformation confer the hydrogel with asymmetric adhesion properties, preventing tissue adhesion when applied in vivo. Animal experiment outcomes reveal that the GTPC hydrogel can seal the damaged intestinal tissue firmly, accelerate tissue healing, and efficiently prevent postoperative adhesion.

8.
ACS Med Chem Lett ; 15(2): 270-279, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38352842

RESUMEN

Speckle-type POZ protein (SPOP) acts as a cullin3-RING ubiquitin ligase adaptor, which facilitates the recognition and ubiquitination of substrate proteins. Previous research suggests that targeting SPOP holds promise in the treatment of clear cell renal cell carcinoma (ccRCC). On the basis of the reported SPOP inhibitor 230D7, a series of ß-lactam derivatives were synthesized in this study. The biological activity assessment of these compounds revealed E1 as the most potent inhibitor, which can disrupt the SPOP-substrate interactions in vitro and suppress the colony formation of ccRCC cells. Taken together, this study provided compound E1 as a potent inhibitor against ccRCC and offered insight into the development of the ß-lactam SPOP inhibitor.

9.
Acta Pharm Sin B ; 14(2): 623-634, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38322350

RESUMEN

Aldehyde oxidase (AOX) is a molybdoenzyme that is primarily expressed in the liver and is involved in the metabolism of drugs and other xenobiotics. AOX-mediated metabolism can result in unexpected outcomes, such as the production of toxic metabolites and high metabolic clearance, which can lead to the clinical failure of novel therapeutic agents. Computational models can assist medicinal chemists in rapidly evaluating the AOX metabolic risk of compounds during the early phases of drug discovery and provide valuable clues for manipulating AOX-mediated metabolism liability. In this study, we developed a novel graph neural network called AOMP for predicting AOX-mediated metabolism. AOMP integrated the tasks of metabolic substrate/non-substrate classification and metabolic site prediction, while utilizing transfer learning from 13C nuclear magnetic resonance data to enhance its performance on both tasks. AOMP significantly outperformed the benchmark methods in both cross-validation and external testing. Using AOMP, we systematically assessed the AOX-mediated metabolism of common fragments in kinase inhibitors and successfully identified four new scaffolds with AOX metabolism liability, which were validated through in vitro experiments. Furthermore, for the convenience of the community, we established the first online service for AOX metabolism prediction based on AOMP, which is freely available at https://aomp.alphama.com.cn.

10.
Environ Sci Technol ; 58(8): 3580-3594, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38354120

RESUMEN

Mycotoxins are a heterogeneous group of toxins produced by fungi that can grow in staple crops (e.g., maize, cereals), resulting in health risks due to widespread exposure from human consumption and inhalation. Dried blood spot (DBS), dried serum spot (DSS), and volumetric tip microsampling (VTS) assays were developed and validated for several important mycotoxins. This review summarizes studies that have developed these assays to monitor mycotoxin exposures in human biological samples and highlights future directions to facilitate minimally invasive sampling techniques as global public health tools. A systematic search of PubMed (MEDLINE), Embase (Elsevier), and CINAHL (EBSCO) was conducted. Key assay performance metrics were extracted to provide a critical review of the available methods. This search identified 11 published reports related to measuring mycotoxins (ochratoxins, aflatoxins, and fumonisins) using DBS/DSS and VTS assays. Multimycotoxin assays adapted for DBS/DSS and VTS have undergone sufficient laboratory validation for applications in large-scale population health and human biomonitoring studies. Future work should expand the number of mycotoxins that can be measured in multimycotoxin assays, continue to improve multimycotoxin assay sensitivities of several biomarkers with low detection rates, and validate multimycotoxin assays across diverse populations with varying exposure levels. Validated low-cost and ultrasensitive minimally invasive sampling methods should be deployed in human biomonitoring and public health surveillance studies to guide policy interventions to reduce inequities in global mycotoxin exposures.


Asunto(s)
Aflatoxinas , Micotoxinas , Ocratoxinas , Tricotecenos , Humanos , Micotoxinas/análisis , Salud Global , Tricotecenos/análisis , Ocratoxinas/análisis , Contaminación de Alimentos
11.
Arthropod Struct Dev ; 78: 101317, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113686

RESUMEN

The genera Omosita and Nitidula from the family Nitidulidae, are often reported to be associated with rotten animal carcasses. However, morphological descriptions of their larval stages are limited and are usually only from the third instar larvae, which does not provide enough systematic data. In this study, the overall structure of three instar larvae from the four Nitidulidae species was compared using optical microscopy, and the resolution was not satisfactory. To compensate, a large number of structures and organs were observed by scanning electron microscopy (SEM). Results showed that the number and distribution of chaetotaxy in different parts, including the macrosetae, setae, and microtrichia, have important identification values between the genera, species, and even instars. We also discuss the possible role of microtrichia in the biology of Nitidulidae larvae. Additionally, we described the number and types of sensilla in three sensory organs, and the morphologic parameters of the head capsule and urogomphi as determined by SEM images, are provided. An identification key with application value for storage products and forensic entomology was also compiled.


Asunto(s)
Escarabajos , Animales , Escarabajos/anatomía & histología , Microscopía Electrónica de Rastreo , Larva/anatomía & histología , Sensilos
12.
Front Endocrinol (Lausanne) ; 14: 1255864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920253

RESUMEN

GNASis a complex locus characterized by multiple transcripts and an imprinting effect. It orchestrates a variety of physiological processes via numerous signaling pathways. Human diseases associated with the GNAS gene encompass fibrous dysplasia (FD), Albright's Hereditary Osteodystrophy (AHO), parathyroid hormone(PTH) resistance, and Progressive Osseous Heteroplasia (POH), among others. To facilitate the study of the GNAS locus and its associated diseases, researchers have developed a range of mouse models. In this review, we will systematically explore the GNAS locus, its related signaling pathways, the bone diseases associated with it, and the mouse models pertinent to these bone diseases.


Asunto(s)
Enfermedades Óseas Metabólicas , Osificación Heterotópica , Seudohipoparatiroidismo , Animales , Ratones , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Cromograninas/genética , Seudohipoparatiroidismo/complicaciones , Seudohipoparatiroidismo/genética , Osificación Heterotópica/genética
13.
Materials (Basel) ; 16(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37834538

RESUMEN

Strain-induced precipitation (SIP) behaviors of 7Mo super-austenitic stainless steel (SASS) under various deformation conditions were studied by stress relaxation tests. The research demonstrates that sigma phases are the primary SIP phases of 7Mo SASS. Generally, SIP is mainly distributed in granular shape at the boundaries of deformed grains or recrystallized grains, as well as around the deformed microstructure, such as deformation twin layers/matrix interfaces. The variation of deformation parameters can lead to changes in microstructure, therefore influencing the distribution of SIP. For instance, with the temperature increases, the SIP distribution gradually evolves from deformed grain boundaries to recrystallized grain boundaries. The average size of SIP increases with increasing temperature and strain, as well as decreasing strain rate. The SIP content also increases with increasing strain and decreasing strain rate, while exhibiting an initial rise followed by a decline with increasing temperature, reaching its maximum value at 850 °C. The presence of SIP can promote recrystallization by particle-induced nucleation (PSN) mechanism during the hot deformation process. Moreover, the boundaries of these recrystallized grains can also serve as nucleation sites for SIP, therefore promoting SIP. This process can be simplified as SIP→PSNRecrystallization→Nucleation sitesSIP. With the increase in holding time and the consumption of stored energy, the process gradually slows down, leading to the formation of a multi-layer structure, namely SIPs/Recrystallized grains/SIPs structure. Moreover, SIP at recrystallized grain boundaries can hinder the growth of recrystallized grains. Through this study, a comprehensive understanding of the SIP behaviors in 7Mo SASS under different deformation conditions has been achieved, as well as the interaction between SIP and recrystallization. This finding provides valuable insights for effective control or regulation of SIP and optimizing the hot working processes of 7Mo SASS.

14.
Ecotoxicol Environ Saf ; 266: 115610, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866036

RESUMEN

Cadmium (Cd) exposure damages the reproductive system. Lipid droplets (LDs) play an important role in steroid-producing cells to provide raw material for steroid hormone. We have found that the LDs of Leydig cells exposed to Cd are bigger than those of normal cells, but the effects on steroidogenesis and its underlying mechanism remains unclear. Using Isobaric tag for relative and absolute quantitation (iTARQ) proteomics, phosphodiesterase beta-2 (PLCß2) was identified as the most significantly up-regulated protein in immature Leydig cells (ILCs) and adult Leydig cells (ALCs) derived from male rats exposed to maternal Cd. Consistent with high expression of PLCß2, the size of LDs was increased in Leydig cells exposed to Cd, accompanied by reduction in cholesterol and progesterone (P4) levels. However, the high PLCß2 did not result in high diacylglycerol (DAG) level, because Cd exposure up-regulated diacylglycerol kinases ε (DGKε) to promote the conversion from DAG to phosphatidic acid (PA). Exogenous PA, which was consistent with the intracellular PA concentration induced by Cd, facilitated the formation of large LDs in R2C cells, followed by reduced P4 level in the culture medium. When PLCß2 expression was knocked down, the increased DGKε caused by Cd was reversed, and then the PA level was decreased to normal. As results, large LDs returned to normal size, and the level of total cholesterol was improved to restore steroidogenesis. The accumulation of PA regulated by PLCß2-DAG-DGKε signal pathway is responsible for the formation of large LDs and insufficient steroid hormone synthesis in Leydig cells exposed to Cd. These data highlight that LD is an important target organelle for Cd-induced steroid hormone deficiency in males.


Asunto(s)
Cadmio , Células Intersticiales del Testículo , Ratas , Masculino , Animales , Células Intersticiales del Testículo/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Gotas Lipídicas/metabolismo , Fosfolipasa C beta/metabolismo , Ácidos Fosfatidicos/metabolismo , Diglicéridos/metabolismo , Transducción de Señal , Esteroides/metabolismo , Progesterona/metabolismo , Colesterol/metabolismo
15.
J Cheminform ; 15(1): 76, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670374

RESUMEN

Lipophilicity is a fundamental physical property that significantly affects various aspects of drug behavior, including solubility, permeability, metabolism, distribution, protein binding, and toxicity. Accurate prediction of lipophilicity, measured by the logD7.4 value (the distribution coefficient between n-octanol and buffer at physiological pH 7.4), is crucial for successful drug discovery and design. However, the limited availability of data for logD modeling poses a significant challenge to achieving satisfactory generalization capability. To address this challenge, we have developed a novel logD7.4 prediction model called RTlogD, which leverages knowledge from multiple sources. RTlogD combines pre-training on a chromatographic retention time (RT) dataset since the RT is influenced by lipophilicity. Additionally, microscopic pKa values are incorporated as atomic features, providing valuable insights into ionizable sites and ionization capacity. Furthermore, logP is integrated as an auxiliary task within a multitask learning framework. We conducted ablation studies and presented a detailed analysis, showcasing the effectiveness and interpretability of RT, pKa, and logP in the RTlogD model. Notably, our RTlogD model demonstrated superior performance compared to commonly used algorithms and prediction tools. These results underscore the potential of the RTlogD model to improve the accuracy and generalization of logD prediction in drug discovery and design. In summary, the RTlogD model addresses the challenge of limited data availability in logD modeling by leveraging knowledge from RT, microscopic pKa, and logP. Incorporating these factors enhances the predictive capabilities of our model, and it holds promise for real-world applications in drug discovery and design scenarios.

16.
Chem Commun (Camb) ; 59(59): 9134-9137, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37409424

RESUMEN

We synthesize a Sn-modified MIL-101(Fe), which can confine Pt to the single-atom scale. This novel Pt@MIL(FeSn) catalyst efficiently hydrogenates levulinic acid to γ-valerolactone (TOF: 1386 h-1, yield: >99%) at only 100 °C and 1 MPa of H2via α-angelica lactone as an intermediate. This could be the first report on switching the reaction path from 4-hydroxypentanoic acid to α-angelica lactone under very mild conditions. Incorporating Sn into MIL-101(Fe) enables the creation of abundant micro-pores less than 1 nm and Lewis acidic sites that stabilize Pt0 atoms. The ensemble of active Pt atoms and a Lewis acid can synergistically enhance adsorption of the CO bond and facilitate dehydrative cyclization of levulinic acid.

17.
PLoS Negl Trop Dis ; 17(7): e0011215, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37410790

RESUMEN

BACKGROUND: Praziquantel (PZQ) has been the first line antischistosomal drug for all species of Schistosoma, and the only available drug for schistosomiasis japonica, without any alternative drugs since the 1980s. However, PZQ cannot prevent reinfection, and cannot cure schistosomiasis thoroughly because of its poor activity against juvenile schistosomes. In addition, reliance on a single drug is extremely dangerous, the development and spread of resistance to PZQ is becoming a great concern. Therefore, development of novel drug candidates for treatment and control of schistosomiasis is urgently needed. METHODOLOGYS/PRINCIPAL FINDINGS: One of the PZQ derivative christened P96 with the substitution of cyclohexyl by cyclopentyl was synthesized by School of Pharmaceutical Sciences of Shandong University. We investigated the in vitro and in vivo activities of P96 against different developmental stages of S. japonicum. Parasitological studies and scanning electron microscopy were used to study the primary action characteristics of P96 in vitro. Both mouse and rabbit models were employed to evaluate schistosomicidal efficacy of P96 in vivo. Besides calculation of worm reduction rate and egg reduction rate, quantitative real-time PCR was used to evaluate the in vivo antischistosomal activity of P96 at molecular level. In vitro, after 24h exposure, P96 demonstrated the highest activities against both juvenile and adult worm of S. japonicum in comparison to PZQ. The antischistosomal efficacy was concentration-dependent, with P96 at 50µM demonstrating the most evident schistosomicidal effect. Scanning electron microscopy demonstrated that P96 caused more severe damages to schistosomula and adult worm tegument compared to PZQ. In vivo, our results showed that P96 was effective against S. japonicum at all developmental stages. Notably, its efficacy against young stage worms was significantly improved compared to PZQ. Moreover, P96 retained the high activity comparable to PZQ against the adult worm of S. japonicum. CONCLUSIONS: P96 is a promising drug candidate for chemotherapy of schistosomiasis japonica, which has broad spectrum of action against various developmental stage, potentially addressing the deficiency of PZQ. It might be promoted as a drug candidate for use either alone or in combination with PZQ for the treatment of schistosomiasis.


Asunto(s)
Praziquantel , Esquistosomiasis Japónica , Esquistosomicidas , Animales , Ratones , Conejos , Microscopía Electrónica de Rastreo , Praziquantel/análogos & derivados , Praziquantel/farmacología , Schistosoma japonicum/efectos de los fármacos , Esquistosomiasis Japónica/tratamiento farmacológico , Esquistosomicidas/farmacología
18.
J Cheminform ; 15(1): 57, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37287071

RESUMEN

Three-dimensional (3D) conformations of a small molecule profoundly affect its binding to the target of interest, the resulting biological effects, and its disposition in living organisms, but it is challenging to accurately characterize the conformational ensemble experimentally. Here, we proposed an autoregressive torsion angle prediction model Tora3D for molecular 3D conformer generation. Rather than directly predicting the conformations in an end-to-end way, Tora3D predicts a set of torsion angles of rotatable bonds by an interpretable autoregressive method and reconstructs the 3D conformations from them, which keeps structural validity during reconstruction. Another advancement of our method over other conformational generation methods is the ability to use energy to guide the conformation generation. In addition, we propose a new message-passing mechanism that applies the Transformer to the graph to solve the difficulty of remote message passing. Tora3D shows superior performance to prior computational models in the trade-off between accuracy and efficiency, and ensures conformational validity, accuracy, and diversity in an interpretable way. Overall, Tora3D can be used for the quick generation of diverse molecular conformations and 3D-based molecular representation, contributing to a wide range of downstream drug design tasks.

19.
Org Lett ; 25(27): 5078-5083, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37382547

RESUMEN

Cobalt(III) and rhodium(III)-catalyzed regio- and chemoselective amidation of benzocyclobutenols has been realized using dioxazolone as the amidating reagent to afford three classes of C-N-coupled products via ß-carbon elimination of the benzocyclobutenol. The Co(III)-catalyzed coupling initially afforded an isolable o-(N-acylamino)arylmethyl ketone, which could further cyclize to the corresponding indole derivatives under condition control. In contrast, efficient stepwise diamidation has been achieved under Rh(III) catalyst control. The chemoselectivities are jointly controlled by the catalyst and reactions conditions.


Asunto(s)
Rodio , Catálisis , Indicadores y Reactivos , Cetonas , Carbono
20.
RSC Adv ; 13(20): 13725-13734, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37152582

RESUMEN

The morphology adjustment and functional doping optimization of polypyrrole (PPy) are of great significance in improving its gas sensing performance. Here, the PPy-0.5TcCoPc nanorods with a uniform dispersed 3-D network were prepared using one-step in situ polymerization using the electrostatic interaction between dopant counterion substituents in tetra-ß-carboxylate cobalt phthalocyanine tetrasodium salt (TcCoPcTs) with larger space structure and pyrrole (Py) molecules, in which TcCoPcTs is not only used as a dopant molecule crosslinking PPy chains to obtain a 3-D network, thus improving the conductivity, but also as a sensor accelerator to improve the gas-sensing performance. The resulting PPy-TcCoPc hybrid exhibits superior NH3-sensing properties than PPy and tetra-ß-carboxylate cobalt phthalocyanine (TcCoPc) under the same test conditions, especially the PPy-0.5TcCoPc sensor shows ultrafast response/recovery time to 50 ppm NH3 (8.1 s/370.8 s), low detection limit of 8.1 ppb and excellent gas selectivity at room temperature (20 °C). Besides, the PPy-0.5TcCoPc sensor also maintains superior response (49.3% to 50 ppm NH3), humidity resistance and conspicuous stability over 45 days. The excellent NH3-sensing performance of the PPy-0.5TcCoPc hybrid arises from the excellent gas selectivity of TcCoPc, the remarkable response mechanism between PPy and NH3, the high electrical conductivity, abundant active sites and good electron transport ability of the unique 3-D network with large specific surface area. The morphology regulation and functional doping optimization strategy of TcCoPcTs doped PPy broaden the research direction of ideal gas sensor materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...