Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circulation ; 149(20): 1578-1597, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38258575

RESUMEN

BACKGROUND: Calcification of the aortic valve leads to increased leaflet stiffness and consequently results in the development of calcific aortic valve disease (CAVD). However, the underlying molecular and cellular mechanisms of calcification remain unclear. Here, we identified a novel aortic valve calcification-associated PIWI-interacting RNA (piRNA; AVCAPIR) that increases valvular calcification and promotes CAVD progression. METHODS: Using piRNA sequencing, we identified piRNAs contributing to the pathogenesis of CAVD that we termed AVCAPIRs. High-cholesterol diet-fed ApoE-/- mice with AVCAPIR knockout were used to examine the role of AVCAPIR in aortic valve calcification (AVC). Gain- and loss-of-function assays were conducted to determine the role of AVCAPIR in the induced osteogenic differentiation of human valvular interstitial cells. To dissect the mechanisms underlying AVCAPIR-elicited procalcific effects, we performed various analyses, including an RNA pulldown assay followed by liquid chromatography-tandem mass spectrometry, methylated RNA immunoprecipitation sequencing, and RNA sequencing. RNA pulldown and RNA immunoprecipitation assays were used to study piRNA interactions with proteins. RESULTS: We found that AVCAPIR was significantly upregulated during AVC and exhibited potential diagnostic value for CAVD. AVCAPIR deletion markedly ameliorated AVC in high-cholesterol diet-fed ApoE-/- mice, as shown by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased peak transvalvular jet velocity and mean transvalvular pressure gradient, as well as increased aortic valve area), and diminished levels of osteogenic markers (Runx2 and Osterix) in aortic valves. These results were confirmed in osteogenic medium-induced human valvular interstitial cells. Using unbiased protein-RNA screening and molecular validation, we found that AVCAPIR directly interacts with FTO (fat mass and obesity-associated protein), subsequently blocking its N6-methyladenosine demethylase activity. Further transcriptomic and N6-methyladenosine modification epitranscriptomic screening followed by molecular validation confirmed that AVCAPIR hindered FTO-mediated demethylation of CD36 mRNA transcripts, thus enhancing CD36 mRNA stability through the N6-methyladenosine reader IGF2BP1 (insulin-like growth factor 2 mRNA binding protein 1). In turn, the AVCAPIR-dependent increase in CD36 stabilizes its binding partner PCSK9 (proprotein convertase subtilisin/kexin type 9), a procalcific gene, at the protein level, which accelerates the progression of AVC. CONCLUSIONS: We identified a novel piRNA that induced AVC through an RNA epigenetic mechanism and provide novel insights into piRNA-directed theranostics in CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , ARN Interferente Pequeño , Animales , Calcinosis/metabolismo , Calcinosis/genética , Calcinosis/patología , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Válvula Aórtica/anomalías , Humanos , Ratones , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/patología , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Masculino , Osteogénesis , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales de Enfermedad , Enfermedad de la Válvula Aórtica/metabolismo , Enfermedad de la Válvula Aórtica/genética , Enfermedad de la Válvula Aórtica/patología , ARN de Interacción con Piwi
2.
J Leukoc Biol ; 114(3): 266-279, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37232941

RESUMEN

The Ca2+-permeable TRPV4 cation channel is expressed in neutrophils and contributes to myocardial ischemia/reperfusion injury. Here we tested the hypotheses that TRPV4 promotes neutrophil activation and subsequently aggregates myocardial ischemia/reperfusion injury. TRPV4 protein was confirmed in neutrophils, and its function was assessed by the current and intracellular Ca2+ concentration elevations evoked by TRPV4 agonists. Furthermore, TRPV4 agonists dose-dependently promoted migration toward fMLP, reactive oxygen species production, and myeloperoxidase release, which were prevented by pretreatment with a selective TRPV4 antagonist, in neutrophils from TRPV4 knockout mice, Ca2+-free medium, or BAPTA-AM + Ca2+-free medium. Blockade of TRPV4 also inhibited the effects of commonly used neutrophil activators fMLP and PMA. Mechanically, TRPV4 regulated neutrophil activation, particularly reactive oxygen species production, by affecting PKCα, P38, and AKT via Ca2+ signaling. In addition, isolated hearts infused with neutrophils from wild-type mice showed additional myocardial ischemia/reperfusion injuries but not those infused with TRPV4 knockout. Our study reveals that TRPV4-mediated neutrophil activation enhances myocardial ischemia/reperfusion injury, and it might be a novel therapeutic target for myocardial ischemia/reperfusion injury and other neutrophil-mediated inflammatory diseases.


Asunto(s)
Daño por Reperfusión Miocárdica , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Neutrófilos/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Transducción de Señal
3.
Front Pharmacol ; 13: 932092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003494

RESUMEN

Aims: Calcific aortic valve disease (CAVD) is a chronic cardiovascular disease with high morbidity that lacks effective pharmacotherapeutics. As a natural flavonoid extracted from Ampelopsis grossedentata, dihydromyricetin (DHM) has been shown to be effective in protecting against atherosclerosis; yet, the therapeutic role of DHM in CAVD remains poorly understood. Herein, we aimed to clarify the therapeutic implications of DHM in CAVD and the underlying molecular mechanisms in human valvular interstitial cells (hVICs). Methods and Results: The protein levels of two known osteogenesis-specific genes (alkaline phosphatase, ALP; runt-related transcription factor 2, Runx2) and calcified nodule formation in hVICs were detected by Western blot and Alizarin Red staining, respectively. The results showed that DHM markedly ameliorated osteogenic induction medium (OM)-induced osteogenic differentiation of hVICs, as evidenced by downregulation of ALP and Runx2 expression and decreased calcium deposition. The SwissTargetPrediction database was used to identify the potential AVC-associated direct protein target of DHM. Protein-protein interaction (PPI) analysis revealed that c-KIT, a tyrosine-protein kinase, can act as a credible protein target of DHM, as evidenced by molecular docking. Mechanistically, DHM-mediated inhibition of c-KIT phosphorylation drove interleukin-6 (IL-6) downregulation in CAVD, thereby ameliorating OM-induced osteogenic differentiation of hVICs and aortic valve calcification progression. Conclusion: DHM ameliorates osteogenic differentiation of hVICs by blocking the phosphorylation of c-KIT, thus reducing IL-6 expression in CAVD. DHM could be a viable therapeutic supplement to impede CAVD.

4.
Cell Calcium ; 104: 102590, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35439615

RESUMEN

The incidence of atrial fibrillation (AF) increases after surgery and is associated with the activation of NLRP3-inflammation. Our previous studies have found that transient receptor potential vanilloid 4 (TRPV4) blockade reduces the susceptibility to AF, but its molecular mechanisms remains unclear. Therefore, we hypothesized that blockage of TRPV4 reduces the incidence of AF by inhibiting NLRP3-inflammasome in sterile pericarditis (SP) mice. In this study, we established SP mice by dusting talcum powder on atrial surfaces. We first confirmed that genetic or pharmacological TRPV4 inhibition reduced the susceptibility to AF in SP mice. We also found that the expression level of NLRP3-inflammasome and inflammatory cytokines significantly increased in the atria of SP mice, which further increased in application the TRPV4 agonist GSK1016790A (GSK101) and decreased in application the TRPV4 antagonist GSK2193874. More importantly, ERK inhibitor (U0126) or NF-κB inhibitor (Bay11-7082) could partially reverse GSK101-induced NLRP3-inflammasome up-regulation. Interestingly, U0126 can reversed GSK101-induced NF-κB phosphorylation, but Bay11-7082 cannot change GSK101-induced ERK phosphorylation. Finally, we shown that the activation of NLRP3-inflammasome and ERK/NF-κB signaling pathway significantly reduced in TRPV4-knockout SP mice. Collectively, our studies indicate that blockage of TRPV4 prevents AF in SP mice by inhibiting NLRP3-inflammasome through the ERK/NF-κB signaling pathway.


Asunto(s)
Fibrilación Atrial , Pericarditis , Animales , Fibrilación Atrial/etiología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/prevención & control , Inflamasomas/metabolismo , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pericarditis/complicaciones , Pericarditis/metabolismo , Canales Catiónicos TRPV/metabolismo
5.
Ann Transl Med ; 9(18): 1401, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34733953

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) is a common cause of heart failure. Cardiac remodeling is the main pathological change in DCM, yet the molecular mechanism is still unclear. Therefore, the present study aims to find potential crucial genes and regulators through bulk and single-cell transcriptomic analysis. METHODS: Three microarray datasets of DCM (GSE57338, GSE42955, GSE79962) were chosen from gene expression omnibus (GEO) to analyze the differentially expressed genes (DEGs). LASSO regression, SVM-RFE, and PPI network methods were then carried out to identify key genes. Another dataset (GSE116250) was used to validate these findings. To further identify DCM-associated specific cell types, transcription factors, and cell-cell interaction networks, GSEA, SCENIC, and CellPhoneDB were conducted on public datasets for single-cell RNA sequencing analysis of DCM (GSE109816 and GSE121893). Finally, reverse transcription-polymerase chain reaction (RT-PCR), western blot, and immunohistochemical were performed to validate DPT expression in fibroblasts and DCM. RESULTS: There were 281 DEGs between DCM and non-failing donors. CCL5 and DPT were identified to be key genes and both genes had a 0.844 area under the receiver operating curve (AUC) in the validation dataset. Further single-cell sequencing analysis revealed three main findings: (I) DPT was mainly expressed in fibroblasts and was significantly upregulated in DCM fibroblasts; (II) DPT+ fibroblasts were involved in the organization of the extracellular matrix (ECM) and collagen fibrils and were regulated by the transcription factor STAT3; and (III) DPT+ fibroblasts had high interactions with endothelial cells through including Ephrin-Eph, ACKR-CXCL, and JAG-NOTCH signal pathways. RT-PCR, western blot, and immunohistochemical confirmed that DPT was highly expressed and co-localized with Vimentin and p-STAT3 in DCM patients. STAT3 inhibitor S3I-201 reduced the expression of DPT in mouse cardiac fibroblasts. CONCLUSIONS: DPT could be used as a diagnostic marker and therapeutic target of DCM. DPT+ fibroblasts could be a novel regulator of the cardiac remodeling process in DCM.

6.
Cell Calcium ; 100: 102483, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34628110

RESUMEN

Previous studies, including our own, have demonstrated that transient receptor potential vanilloid 4 (TRPV4) is involved in myocardial ischemia-reperfusion (IR) injury, yet its underlying molecular mechanism remains unclear. In this study, we isolated mice hearts for a Langendorff perfusion test and used HL-1 myocytes for in vitro assessments. We first confirmed that TRPV4 agonist (GSK101) enhanced myocardial IR injury, as demonstrated by the reduced recovery of cardiac function, larger myocardial infarct size, and more apoptotic cells. We also found that GSK101 could further increase the phosphorylation of JNK and CaMKII in isolated hearts during IR. Notably, GSK101 dose-dependently evoked the phosphorylation of JNK and CaMKII in isolated normal hearts. All above GSK101-induced effects could be significantly blocked by the pharmacological inhibition or genetic ablation of TRPV4. More importantly, JNK inhibition (with SP600125) or CaMKII inhibition (with KN93 or in transgenic AC3-I mice) could prevent GSK101-induced myocardial injury during IR. In HL-1 myocytes, GSK101 triggered Ca2+ influx and evoked the phosphorylation of JNK and CaMKII but these effects were abolished by removing extracellular Ca2+ or in the presence of a TRPV4 antagonist. Finally, we showed that in HL-1 myocytes and isolated hearts during IR, JNK inhibition significantly inhibited the phosphorylation of CaMKII induced by GSK101 but CaMKII inhibition had no effect on JNK activation induced by GSK101. Our data suggest that TRPV4 activation exacerbates myocardial IR injury via the JNK-CaMKII phosphorylation pathway.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corazón , Sistema de Señalización de MAP Quinasas , Ratones , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Canales Catiónicos TRPV/metabolismo
7.
Front Immunol ; 12: 758157, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975847

RESUMEN

Pre-existing Ca2+ handling abnormalities constitute the arrhythmogenic substrate in patients developing postoperative atrial fibrillation (POAF), a common complication after cardiac surgery. Postoperative interleukin (IL)-6 levels are associated with atrial fibrosis in several animal models of POAF, contributing to atrial arrhythmias. Here, we hypothesize that IL-6-mediated-Ca2+ handling abnormalities contribute to atrial fibrillation (AF) in sterile pericarditis (SP) rats, an animal model of POAF. SP was induced in rats by dusting atria with sterile talcum powder. Anti-rat-IL-6 antibody (16.7 µg/kg) was administered intraperitoneally at 30 min after the recovery of anesthesia. In vivo electrophysiology, ex vivo optical mapping, western blots, and immunohistochemistry were performed to elucidate mechanisms of AF susceptibility. IL-6 neutralization ameliorated atrial inflammation and fibrosis, as well as AF susceptibility in vivo and the frequency of atrial ectopy and AF with a reentrant pattern in SP rats ex vivo. IL-6 neutralization reversed the prolongation and regional heterogeneity of Ca2+ transient duration, relieved alternans, reduced the incidence of discordant alternans, and prevented the reduction and regional heterogeneity of the recovery ratio of Ca2+ transient. In agreement, western blots showed that IL-6 neutralization reversed the reduction in the expression of ryanodine receptor 2 (RyR2) and phosphorylated phospholamban. Acute IL-6 administration to isolated rat hearts recapitulated partial Ca2+ handling phenotype in SP rats. In addition, intraperitoneal IL-6 administration to rats increased AF susceptibility, independent of fibrosis. Our results reveal that IL-6-mediated-Ca2+ handling abnormalities in SP rats, especially RyR2-dysfunction, independent of IL-6-induced-fibrosis, early contribute to the development of POAF by increasing propensity for arrhythmogenic alternans.


Asunto(s)
Calcio/metabolismo , Interleucina-6/fisiología , Pericarditis/complicaciones , Potenciales de Acción , Animales , Fibrilación Atrial/etiología , Fibrilación Atrial/fisiopatología , Modelos Animales de Enfermedad , Fibrosis , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Interleucina-6/antagonistas & inhibidores , Interleucina-6/farmacología , Masculino , Complicaciones Posoperatorias , Pulso Arterial , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/farmacología , Canal Liberador de Calcio Receptor de Rianodina/fisiología
8.
JCI Insight ; 5(23)2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33119551

RESUMEN

Atrial fibrillation (AF) commonly occurs after surgery and is associated with atrial remodeling. TRPV4 is functionally expressed in the heart, and its activation affects cardiac structure and functions. We hypothesized that TRPV4 blockade alleviates atrial remodeling and reduces AF induction in sterile pericarditis (SP) rats. TRPV4 antagonist GSK2193874 or vehicle was orally administered 1 day before pericardiotomy. AF susceptibility and atrial function were assessed using in vivo electrophysiology, ex vivo optical mapping, patch clamp, and molecular biology on day 3 after surgery. TRPV4 expression increased in the atria of SP rats and patients with AF. GSK2193874 significantly reduced AF vulnerability in vivo and the frequency of atrial ectopy and AF with a reentrant pattern ex vivo. Mechanistically, GSK2193874 reversed the abnormal action potential duration (APD) prolongation in atrial myocytes through the regulation of voltage-gated K+ currents (IK); reduced the activation of atrial fibroblasts by inhibiting P38, AKT, and STAT3 pathways; and alleviated the infiltration of immune cells. Our results reveal that TRPV4 blockade prevented abnormal changes in atrial myocyte electrophysiology and ameliorated atrial fibrosis and inflammation in SP rats; therefore, it might be a promising strategy to treat AF, particularly postoperative AF.


Asunto(s)
Fibrilación Atrial/prevención & control , Pericarditis/metabolismo , Canales Catiónicos TRPV/metabolismo , Potenciales de Acción/fisiología , Anciano , Animales , Fibrilación Atrial/metabolismo , Remodelación Atrial/fisiología , Femenino , Fibrosis/metabolismo , Atrios Cardíacos/fisiopatología , Frecuencia Cardíaca/fisiología , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Pericarditis/fisiopatología , Piperidinas/farmacología , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/fisiología
9.
Front Pharmacol ; 10: 1150, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636563

RESUMEN

Ca2+ entry via the transient receptor potential vanilloid 4 (TRPV4) channel contributes to Ca2+ overload and triggers many pathophysiological conditions, including myocardial ischemia/reperfusion (I/R) injury. Propofol, a widely used intravenous anesthetic, attenuates myocardial I/R injury. However, the mechanism of propofol remains to be examined. The present study aims to test the hypothesis that propofol attenuates myocardial I/R injury through the suppression of TRPV4. We used a murine ex vivo model of myocardial I/R and in vitro cultured myocytes subjected to hypoxia/reoxygenation (H/R). Propofol or TRPV4 antagonist, HC-067047, attenuates myocardial I/R injury in isolated hearts. In addition, propofol, HC-067047, or TRPV4-siRNA attenuates H/R-induced intracellular Ca2+ concentration ([Ca2+]i) increase and cell viability reduction. On the contrary, TRPV4 agonist GSK1016790A exacerbates both ex vivo and in vitro myocardial injury. Pretreatment with propofol reverses the myocardial injury and intracellular Ca2+ overload induced by GSK1016790A at least in vitro. However, neither the combination of propofol and HC-067047 nor applying propofol to cells transfected with TRPV4-siRNA creates additional protective effects. In addition, propofol dose-dependently inhibits TRPV4-mediated Ca2+ entry induced by GSK1016790A and 4α-PDD. Propofol attenuates myocardial I/R injury partially through the suppression of TRPV4 channel and the subsequent inhibition of intracellular Ca2+ overload.

10.
Oxid Med Cell Longev ; 2019: 7283683, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31308876

RESUMEN

Antioxidative stress provides a cardioprotective effect during myocardial ischemia/reperfusion (I/R). Previous research has demonstrated that the blockade of transient receptor potential vanilloid 4 (TRPV4) attenuates myocardial I/R injury. However, the underlying mechanism remains unclear. The current study is aimed at investigating the antioxidative activity of TRPV4 inhibition and elucidating the underlying mechanisms in vitro and ex vivo. We found that the inhibiting TRPV4 by the selective TRPV4 blocker HC-067047 or specific TRPV4-siRNA significantly reduces reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) levels in H9C2 cells exposed to hypoxia/reoxygenation (H/R). Meanwhile, the activity of antioxidative enzymes, particularly superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), is enhanced. Furthermore, after H/R, HC-067047 treatment increases the expression of P-Akt and the translocation of nuclear factor E2-related factor 2 (Nrf2) and related antioxidant response element (ARE) mainly including SOD, GSH-Px, and catalase (CAT). LY294002, an Akt inhibitor, suppresses HC-067047 and specific TRPV4-siRNA-induced Nrf2 expression and its nuclear accumulation. Nrf2 siRNA attenuates HC-067047 and specific TRPV4-siRNA-induced ARE expression. In addition, treatment with LY294002 or Nrf2 siRNA significantly attenuates the antioxidant and anti-injury effects of HC-067047 in vitro. Finally, in experiments on isolated rat hearts, we confirmed the antioxidative stress roles of TRPV4 inhibition during myocardial I/R and the application of exogenous H2O2. In conclusion, the inhibition of TRPV4 exerts cardioprotective effects through enhancing antioxidative enzyme activity and expressions via the Akt/Nrf2/ARE pathway.


Asunto(s)
Antioxidantes/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Animales , Elementos de Respuesta Antioxidante/efectos de los fármacos , Elementos de Respuesta Antioxidante/genética , Catalasa/metabolismo , Cromonas/farmacología , Peróxido de Hidrógeno/metabolismo , Masculino , Morfolinas/farmacología , Morfolinas/uso terapéutico , Factor 2 Relacionado con NF-E2 , Proteína Oncogénica v-akt/antagonistas & inhibidores , Proteína Oncogénica v-akt/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pirroles/uso terapéutico , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo
11.
Thromb Haemost ; 118(11): 1885-1894, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30300911

RESUMEN

The development of deep venous thrombosis (DVT) is a sterile inflammatory process related to cytokines, such as interleukin (IL)-6 or IL-17. IL-9 is a cytokine involved in many inflammatory diseases, including cystic fibrosis, ulcerative colitis, psoriasis and psoriatic arthritis. However, it remains unknown whether IL-9 is related to DVT. In this study, we characterized the role and mechanism of IL-9 in DVT. Analysis of the data of patients with and without DVT revealed that stasis, venous surgery as well as elevated IL-9 and sP-selectin levels were related to the development of DVT. We also showed for the first time that IL-9 receptor was expressed in mouse platelets, and it dramatically promoted the aggregation rate and expression of P-selectin (CD62P) in the presence of adenosine diphosphate, but otherwise exhibited no effect on platelets. This study also revealed that Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signalling pathway, not phosphoinositide 3-kinase/AKT pathway, was involved in the process. We also showed in a mouse model of stasis that the thrombus size (weight and length) and CD62P expression in the thrombus were higher and lower in the IL-9 group and IL-9 antibody group, respectively, than in the control group. All these findings indicated that IL-9 facilitated platelet function through the JAK2/STAT3 pathway, thus promoting the development of DVT.


Asunto(s)
Plaquetas/fisiología , Interleucina-9/metabolismo , Trombosis de la Vena/inmunología , Animales , Anticuerpos Bloqueadores/administración & dosificación , Células Cultivadas , Progresión de la Enfermedad , Humanos , Janus Quinasa 2/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Selectina-P/sangre , Agregación Plaquetaria , Receptores de Interleucina-9/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
12.
Int Immunopharmacol ; 57: 132-138, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29482157

RESUMEN

Deep venous thrombosis (DVT) is a significant problem in the health care industry worldwide. However, the factors and signaling pathways that trigger DVT formation are still largely unknown. In this study, we investigated the role of interleukin-17A (IL-17A) in DVT formation, focusing on the role of platelet aggregation, neutrophil infiltration, and endothelium cell (EC) activation. Notably, IL-17A levels increased in DVT patients as well as in a mouse DVT model. The DVT model mice were injected with recombinant mouse-IL-17A (rIL-17A) or anti-IL-17A monoclonal antibody (mAb) to further evaluate the effects of this cytokine. We found that rIL-17A promotes DVT formation, while IL-17A mAb represses DVT formation. Furthermore, platelet activation, highlighted by CD61 and CD49ß expression, and aggregation were enhanced in platelets of rIL-17A-treated mice. rIL-17A also enhanced neutrophil infiltration by regulating the expression of macrophage inflammatory protein-2 (MIP-2) and the release of neutrophil extracellular traps (NETs). IL-17A mAb treatment inhibited both platelet activation and neutrophil activity. Moreover, rIL-17A appears to promote vein EC activation, while IL-17A mAb deters it. Taken together, these data suggest that IL-17A promotes DVT pathogenesis by enhancing platelet activation and aggregation, neutrophil infiltration, and EC activation and that anti-IL-17A mAb could be used for the treatment of DVT.


Asunto(s)
Plaquetas/inmunología , Células Endoteliales/fisiología , Interleucina-17/metabolismo , Trombosis de la Vena/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Células Cultivadas , Quimiocina CXCL2/metabolismo , Modelos Animales de Enfermedad , Trampas Extracelulares/metabolismo , Humanos , Interleucina-17/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Agregación Plaquetaria
13.
J Huazhong Univ Sci Technolog Med Sci ; 35(5): 679-683, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26489621

RESUMEN

The opening of mitochondrial permeability transition pore (MPTP) plays a critical role in platelet activation. However, the potential trigger of the MPTP opening in platelet activation remains unknown. Inflammation is the crucial trigger of platelet activation. In this study, we aimed to explore whether and how the important inflammatory cytokine IL-17 is associated with MPTP opening in platelets activation by using MPTP inhibitor cyclosporine-A (CsA). The mitochondrial membrane potential (ΔΨm) was detected to reflect MPTP opening levels. And the platelet aggregation, activation, and the primary signaling pathway were also tested. The results showed that the MPTP opening levels were increased and Δψm reduced in platelets administrated with IL-17. Moreover, the levels of aggregation, CD62P, PAC-1, P53 and the phosphorylation of ERK2 were enhanced along with the MPTP opening in platelets pre-stimulated with IL-17. However, CsA attenuated these effects triggered by IL-17. It was suggested that IL-17 could induce MPTP opening through ERK2 and P53 signaling pathway in platelet activation and aggregation.


Asunto(s)
Plaquetas/efectos de los fármacos , Interleucina-17/farmacología , Proteínas de Transporte de Membrana Mitocondrial/agonistas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Plaquetas/citología , Plaquetas/metabolismo , Separación Celular , Ciclosporina/farmacología , Fosfatasa 2 de Especificidad Dual/genética , Fosfatasa 2 de Especificidad Dual/metabolismo , Regulación de la Expresión Génica , Humanos , Interleucina-17/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteína Quinasa 1 Activada por Mitógenos/genética , Selectina-P/genética , Selectina-P/metabolismo , Fosforilación/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Cultivo Primario de Células , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...