Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893533

RESUMEN

Thiosulfate leaching has been regarded as a promising alternative to cyanidation, but it still faces the challenge of the recovery of low content of gold from high concentrations of thiosulfate solutions. Liquid-liquid extraction is a method to address this issue but is still limited by the use of volatile and toxic organic solvents. To overcome this limitation, this work synthesized some functionalized dicationic ionic liquids (DILs) to serve as extraction solvents for the recovery of the gold-thiosulfate complex, [Au(S2O3)2]3-, from thiosulfate solutions. Experimental results indicated that the DILs showed higher extraction rates toward [Au(S2O3)2]3- compared with their monocationic-based counterparts, likely due to the stronger electrostatic interaction between the dications of the ILs and [Au(S2O3)2]3-. The transfer of [Au(S2O3)2]3- from the water phase to the IL phase was identified as an anion exchange and endothermic process. The rate of extraction was limited by the anion exchange process occurring at the IL-water interface. The extraction ability of ILs highly depended on the type of anion; specifically, the ILs with anions that had strong hydrogen-bonding ability exhibited high extraction ability toward [Au(S2O3)2]3-. Finally, DILs proved effective in the recovery of [Au(S2O3)2]3- from an actual gold leaching solution and exhibited high selectivity toward coexisting ions, indicating their potential as environmentally friendly solvents for gold recovery.

2.
Molecules ; 28(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513426

RESUMEN

Metal oxide nanoparticles (NPs) have been widely used as catalysts in the chemical industry, but their preparation is usually limited by strict conditions such as high temperature, elevated pressure, and the use of volatile and highly toxic organic solvents. To solve this problem, this work developed an environmentally benign method using green solvents, i.e., natural deep eutectic solvents (NADESs), as a reaction medium to prepare copper oxide (CuO) particles. The experimental results suggested that the synthesized CuO particles were sheet-like mesoporous NPs, and they exhibited excellent catalytic performance towards the photodegradation of rhodamine B (RhB) in the presence of potassium monopersulfate (PMS). The catalytic activity of the synthesized CuO NPs was better than that of the reported metal oxide-based catalysts. Reactive species such as photoexcited holes, superoxide radicals, and singlet oxygen were involved in the RhB degradation. These results indicated that NADESs are good media for the preparation of CuO NPs, and exhibit the potential for application to the preparation of other metal oxides.

3.
Molecules ; 26(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923637

RESUMEN

Baicalin which has multiple biological activities is the main active component of the root of Scutellaria baicalensis Georgi (SBG). Although its isolation and purification by adsorption methods have aroused much interest of the scientific community, it suffered from the poor selectivity of the adsorbents. In this work, an environmentally benign method was developed to prepare ionic liquids (ILs) grafted silica by using IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim]NTf2) and ethanol as reaction media. The IL 1-propyl-3-methylimidazolium chloride ([C3mim]Cl) grafted silica ([C3mim]+Cl-@SiO2) was used to adsorb and purify baicalin from the root extract of Scutellaria baicalensis Georgi (SBG). Experimental results indicated that the adsorption equilibrium can be quickly achieved (within 10 min). The adsorption behavior of [C3mim]+Cl-@SiO2 for baicalin was in good agreement with Langmuir and Freundlich models and the adsorption was a physisorption process as suggested by Dubinin-Radushkevich model. Compared with commercial resins, [C3mim]+Cl-@SiO2 showed the strongest adsorption ability and highest selectivity. After desorption and crystallization, a purity of baicalin as high as 96.5% could be obtained. These results indicated that the ILs grafted silica materials were promising adsorbents for the adsorption and purification of baicalin and showed huge potential in the purification of other bioactive compounds from natural sources.


Asunto(s)
Flavonoides/química , Líquidos Iónicos/química , Dióxido de Silicio/química , Adsorción , Flavonoides/aislamiento & purificación , Extractos Vegetales/química , Scutellaria baicalensis/química
4.
Appl Spectrosc ; 67(6): 648-55, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23735250

RESUMEN

The molecular mechanism of the interaction between pepsin and two typical ionic liquids (ILs), 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) and 1-octyl-3-methylimidazolium chloride ([C8mim]Cl), was investigated with fluorescence spectroscopy, ultraviolet absorption, and circular dichroism spectroscopy at a pH value of 1.6. The results suggest that ILs could quench the intrinsic fluorescence of pepsin, probably via a dynamic quenching mechanism. The fluorescence quenching constants were determined by employing the classic Stern-Volmer equation. The constant values are very small, indicating that only a very weak interaction between ILs and pepsin exists. The Gibbs free-energy change, enthalpy change (ΔH), and entropy change (ΔS) during the interaction of pepsin and ILs were estimated. Positive values of ΔH and ΔS indicate that the interaction between ILs and pepsin is mainly driven by hydrophobic interaction. Synchronous and three-dimensional fluorescence spectra demonstrate that the addition of ILs (0-0.20 mol L(-1) for each IL) does not bring apparent changes to the microenvironments of tyrosine and tryptophan residues. Activity experiments show that the activity of pepsin is concentration dependent; higher concentrations of ILs (>0.22 mol L(-1) for [C8mim]Cl and >0.30 mol L(-1) for [C4mim]Cl) cause the remarkable reduction of enzyme activity. The presence of ILs also does not improve the thermal stability of pepsin.


Asunto(s)
Líquidos Iónicos/química , Pepsina A/química , Espectrometría de Fluorescencia/métodos , Animales , Boratos/química , Boratos/metabolismo , Estabilidad de Enzimas , Imidazoles/química , Imidazoles/metabolismo , Líquidos Iónicos/metabolismo , Pepsina A/metabolismo , Porcinos
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 105: 297-303, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23318773

RESUMEN

The interaction of an amino-functionalized ionic liquid, 1-(2-aminoethyl)-3-butylimidazolium bromide ([NH(2)C(2)C(4)im]Br) with two enzymes, pepsin and papain was investigated using fluorescence spectroscopic technique. It is found that [NH(2)C(2)C(4)im]Br has strong ability to quench the intrinsic fluorescence of pepsin and papain. Quenching mechanisms are considered as static quenching for papain and dynamic quenching for pepsin, respectively. The binding constants and the number of binding sites (n) of [NH(2)C(2)C(4)im]Br to papain were calculated at different temperatures. The thermodynamic parameters such as free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS), were calculated by thermodynamic equations. The values of ΔG, ΔH and ΔS suggest that interaction of [NH(2)C(2)C(4)im]Br with the two enzymes is spontaneous. Hydrogen bonding and van der Waals interactions play important roles in the binding process of [NH(2)C(2)C(4)im]Br to papain. However, hydrophobic interaction is the main driving force for the interaction of [NH(2)C(2)C(4)im]Br with pepsin. The results of three-dimensional fluorescence spectra show that [NH(2)C(2)C(4)im]Br has no obvious effects on the polypeptide structures of the two enzymes. Additionally, the [NH(2)C(2)C(4)im]Br-containing system can slightly increase the activities of the two enzymes.


Asunto(s)
Imidazoles/metabolismo , Líquidos Iónicos/metabolismo , Papaína/metabolismo , Pepsina A/metabolismo , Aminación , Aminas/química , Aminas/metabolismo , Animales , Imidazoles/química , Líquidos Iónicos/química , Papaína/química , Pepsina A/química , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia/métodos , Porcinos , Termodinámica
6.
Appl Biochem Biotechnol ; 168(3): 592-603, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22798189

RESUMEN

The interaction between papain and two typical ionic liquids (ILs), 1-octyl-3-methylimidazolium chloride ([C(8)mim]Cl) and 1-butyl-3-methylimidazolium chloride ([C(4)mim]Cl), was investigated by using fluorescence spectroscopy technique at a pH value of 7.4. The results suggested that ILs could quench the intrinsic fluorescence of papain probably via a static quenching mechanism. The binding constants were determined by employing the fluorescence quenching method. They were very small compared with that of volatile organic solvents, indicating that only very weak interaction between ILs and papain existed. The Gibbs free energy change (∆G), enthalpy change (∆H), and entropy change (∆S) during the interaction of papain and ILs were estimated. Negative values of these parameters indicated that the interaction between ILs and papain was a spontaneous process, also implying that hydrogen bonding and van der Waals forces played important roles in the interaction processes.


Asunto(s)
Líquidos Iónicos/química , Papaína/química , Espectrometría de Fluorescencia/métodos , Cinética , Unión Proteica , Termodinámica
7.
Chemphyschem ; 10(14): 2516-23, 2009 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-19746385

RESUMEN

Considering the ionic nature of ionic liquids (ILs), ionic association is expected to be essential in solutions of ILs and to have an important influence on their applications. Although numerous studies have been reported for the ionic association behavior of ILs in solution, quantitative results are quite scarce. Herein, the conductivities of the ILs [Cnmim]Br (n=4, 6, 8, 10, 12), [C4mim][BF4], and [C4mim][PF6] in various molecular solvents (water, methanol, 1-propanol, 1-pentanol, acetonitrile, and acetone) are determined at 298.15 K as a function of IL concentration. The conductance data are analyzed by the Lee-Wheaton conductivity equation in terms of the ionic association constant (KA) and the limiting molar conductance (Lambda(m)(0)). Combined with the values for the Br- anion reported in the literature, the limiting molar conductivities and the transference numbers of the cations and [BF4]- and [PF6]- anions are calculated in the molecular solvents. It is shown that the alkyl chain length of the cations and type of anion affect the ionic association constants and limiting molar conductivities of the ILs. For a given anion (Br-), the Lambda(m)(0) values decrease with increasing alkyl chain length of the cations in all the molecular solvents, whereas the KA values of the ILs decrease in organic solvents but increase in water as the alkyl chain length of the cations increases. For the [C4mim]+ cation, the limiting molar conductivities of the ILs decrease in the order Br- > [BF4]- > [PF6]-, and their ionic association constants follow the order [BF4]- > [PF6]- > Br- in water, acetone, and acetonitrile. Furthermore, and similar to the classical electrolytes, a linear relationship is observed between ln KA of the ILs and the reciprocal of the dielectric constants of the molecular solvents. The ILs are solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation. This information is expected to be useful for the modulation of the IL conductance by the alkyl chain length of the cations, type of anion, and physical properties of the molecular solvents.

8.
J Phys Chem B ; 111(22): 6181-8, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17497769

RESUMEN

Densities, conductivities, and polarity indexes of pyrene for aqueous solutions of a series of ionic liquids [C(n)mim]Br (n = 4, 6, 8, 10, 12) and [C4mim][BF4] have been determined at 298.15 K as a function of ionic liquid concentrations. It was shown that possible aggregation appeared for the ionic liquids in aqueous solutions except for [C4mim]Br. The critical aggregation concentration (CAC) of the ionic liquids, the ionization degree of aggregates (beta), the standard Gibbs energy of aggregation (Delta G(m)(o)), the limiting molar conductivity (Lambda(m)(o)), and the standard partial molar volume (V(m)(o)) for the ionic liquids were derived from the experimental data. The dependence of the CAC, Delta G(m)(o), Lambda(m)(o), and V(m)(o) on the length of the alkyl chain of the cations was examined. It was further suggested from volumetric data that a micelle was formed for [C8mim]Br, [C10mim]Br, and [C12mim]Br in aqueous solutions. Their apparent molar volumes at the critical micelle concentration (V Phi,CMC), apparent molar volumes in the micelle phase (V(Phi)(mic)), and the change of their apparent molar volume upon micellization (Delta V Phi,m) were calculated by application of the pseudophase model of micellization. In addition, the average aggregation number of [C(n)mim]Br (n = 8, 10, 12) has been determined by the steady-state fluorescence quenching technique, and predicted from a simple geometrical mode. It is found that the experimental values are in good agreement with the predicted ones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...