Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Curr Med Chem ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38738730

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a highly fatal malignancy with increasing incidence, and programmed cell death (PCD) plays an important role in homeostasis. AIMS: This study aimed to explore the ESCC of heterogeneity based on the PCD signatures for the diagnosis and treatment of patients. METHODS: The clinical information and RNA-seq data of patients with ESCC and the PCD-related genes set were used to identify PCD signatures.The "limma" package was used to identify the differentially expressed genes (DEGs). "Clusterprofiler" package was used for function enrichment analysis, and the "ConsensusClusterPlus" package was performed for consensus clustering. Finally, the "GSVA" package and the Cibersort algorithm were used for the immune infiltration analysis. RESULTS: We performed differential expression analysis between ESCC and normal samples and identified 1659 DEGs, of which 124 DEGs were PCD genes. Then, the patients were divided into cluster1 and cluster2 based on the expression of 124 PCD genes. There was a significant difference in immune infiltration between the two clusters. The patients in cluster 1 had a higher immune score and more CD56dim natural killer cells, monocytes, activated CD4 T cells, eosinophil, and activated B cells infiltration, while cluster2 had a higher stromal score, more immune regulation, and immune checkpoint genes expression. CONCLUSION: We identified two clusters based on PCD gene expression and characterized their tumor microenvironment and immune checkpoint difference. Our findings may provide some new insight into the treatment of ESCC.

4.
Materials (Basel) ; 17(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38611992

RESUMEN

Since the formation of reversed austenite during critical tempering treatment is an important factor affecting the mechanical properties of 13Cr4Ni martensitic stainless steel, a detailed study of the content and morphology of reversed austenite in heat treatment is needed. In this study, the variation curves of a reversed austenite volume fraction with holding time at different tempering temperatures were measured by in situ X-ray diffraction (XRD), and the reversed austenite and carbides of each process were evaluated by transmission electron microscopy (TEM). The austenite content shows a parabolic change with the increase in the tempering temperature; the maximum can reach a peak of about 6.8% at 610 °C, and drops to 0% at 660 °C. It also shows a parabolic change with the extension of the holding time, reaching a maximum of about 9.2% at 5 h of holding time, and a decreasing trend at 10 h of holding time, about 6.8%. The results show that the precipitation of carbides in the microstructure causes elemental segregation at grain boundaries and inside, which is one of the main factors affecting the thermal stability of reversed austenite formation. The kinetic process of reversed austenite during the tempering process was simulated using the JMAK model and the KM model, which can describe the trend of reversed austenite content during the tempering process. Combining the two models, a mathematical model for the room-temperature reversed austenite content under different processes was obtained, and this can predict the room-temperature austenite content.

5.
ACS Omega ; 9(5): 5175-5192, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343922

RESUMEN

The coronavirus disease-19 (COVID-19) pandemic has had a significant impact on human life worldwide since 2019. Specific vaccines and antiviral agents are the most effective means of preventing and treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Additionally, antiviral protective equipment and early diagnosis also contribute to controlling the spread of COVID-19. The utilization of biomaterials in medicine and pharmaceuticals is crucial to ensure the positive impact of vaccines, antiviral agents, and protective equipment. In this review, we discuss the application of various types of biomaterials, including polymers, lipid nanoparticles, inorganic biomaterials, protein- or peptide-associated biomaterials, self-assembled biomaterials, and other biomaterials, for the vaccine, treatment, and prevention of COVID-19. Finally, we provide a perspective on future opportunities and challenges for developing biomaterials to combat other viral outbreaks and diseases.

6.
Polymers (Basel) ; 15(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37836066

RESUMEN

The degradation of polylactide (PLA) films of different structures under conditions of controlled composting has been studied. We have demonstrated that PLA underwent degradation within one month in a substrate that simulated standard industrial composting. Regardless of the initial structure of the samples, the number-average molecular weight (Mn) decreased to 4 kDa while the degree of crystallinity increased to about 70% after 21 days of composting. Addition of an inoculant to the standard substrate resulted in the accelerated degradation of the PLA samples for one week due to an abiotic hydrolysis. These findings have confirmed that industrial composting could solve the problem of plastic disposal at least for PLA.

7.
Materials (Basel) ; 16(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37834688

RESUMEN

A honeycomb column thin-walled structure (HCTS) was designed and the relative density was calculated for numerical simulation. The HCTS samples were fabricated via selective laser melting (SLM). The numerical simulation and a three-point bending test were conducted to evaluate the mechanical properties of the HCTS made of Ti6Al4V. The findings of the numerical simulation demonstrated that the HCTS had a stronger resistance to deformation and a maximum loading force 30% higher than the equivalent solid thin-walled structure (ESTS). The mechanical performance of the HCTS as determined by the three-point bending test was mostly comparable with the numerical simulation. The maximum loading force of the experimental HCTS050-E thin-walled structure was 1200 N higher than that of HCTS050-S. The numerical simulation can provide theoretical guidance for the SLM processing of HCTSs.

8.
Chemosphere ; 343: 140294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37758078

RESUMEN

There many materials were used in lake restoration to immobilize phosphorus (P) and reduce the effect of eutrophication. Among them, calcium/aluminum composite (CAC) showed a good capacity of P adsorption. However, a comprehensive of its performance, ecological safety, and the mechanism of P passivation in the aluminum-bound P (Al -P) dominated sediments under varying redox conditions remains incomplete. In the current study, both unwashed CAC (UCAC) and washed CAC (WCAC) showed good P adsorption properties, and the greatest maximum capacity for P adsorption (Qmax) reached 206.8 mg/g at pH 8.5 for UCAC. The SRP and TP in the overlying water of the uncapped sediments showed a decrease-increase-decrease trend in a sequence of transition from aerobic to anaerobic to re-aerobic stages. In contrast, the SRP and TP of the two CACs-capped sediments were maintained low. Phosphorus forms in the uncapped sediment also underwent significant changes during continuous variation of dissolved oxygen (DO) levels. In particular, the decrease in iron-bound P (Fe-P) and Al-P was significantly promoted in the anaerobic phase, and the released P was reabsorbed to form mainly Fe-P in the re-aerobic phase. The CACs-capping promoted the transformation of Fe-P to residual P (Res-P), forming a thick static layer in the surface sediment, thus significantly inhibiting sediment P release. Moreover, the CACs-capping did not induce the Al3+ leaching and significant changes of the microbial community in sediments, and their performances of P immobilization could keep stable to resist the redox variation, which promised to be a good choice for P passivation in eutrophic lake sediments dominated by Al/Fe-P. These findings also confirmed that the risk of P release from Al/Fe-P (mainly Al-P)-dominated sediments was strongly influenced by continuously changing redox conditions, and was probably enhanced by the formation of Fe-P from the resorption of the released P.


Asunto(s)
Aluminio , Contaminantes Químicos del Agua , Aluminio/química , Calcio/química , Fósforo/química , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Lagos/química , Calcio de la Dieta , Oxidación-Reducción
9.
Bioresour Technol ; 387: 129684, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586433

RESUMEN

In this study, through quantitative detection of key substances and enzyme activities, an integrated analysis of 16S rRNA sequencing and metatranscriptomics revealed the mechanisms by which salt and oil influence the biotransformation process during anaerobic digestion (AD). The results demonstrated that a salt concentration of 6 g/L promoted lipid metabolism and hydrogenotrophic methanogenesis, while inhibiting the acetoclastic pathway. An oil concentration of 5 g/L facilitated the expression of key enzyme-encoding genes involved in ß-oxidation of long-chain fatty acids, transcription, and acetoclastic methanogenesis. It also promoted the enrichment of syntrophic propionate/butyrate oxidation bacteria (Syntrophomonas and DMER64). Salt/oil co-addition enhanced the expression of genes related to glucose metabolism, amino acid metabolism, organic acid synthesis, and quorum sensing. Furthermore, salt/oil co-addition inhibited the secretion of key enzymes related to methanogens by impeding the transcription process. Collectively, these findings provide systematic insights into how salt and oil affect the biochemical metabolic mechanisms of AD.


Asunto(s)
Microbiota , Eliminación de Residuos , Anaerobiosis , Alimentos , Multiómica , ARN Ribosómico 16S , Cloruro de Sodio/farmacología , Metano , Reactores Biológicos/microbiología
10.
Anal Chem ; 95(33): 12541-12549, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37574906

RESUMEN

Stable isotope-assisted metabolomics (SIAM) is a powerful tool for discovering transformation products (TPs) of contaminants. Nevertheless, the high cost or lack of isotope-labeled analytes limits its application. In-house H/D (hydrogen/deuterium) exchange reactions enable direct 2H labeling to target analytes with favorable reaction conditions, providing intuitive and easy-to-handle approaches for environmentally relevant laboratories to obtain cost-effective 2H-labeled contaminants of emerging concern (CECs). We first combined the use of in-house H/D exchange and 2H-SIAM to discover potential TPs of 6PPD (N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine), providing a new strategy for finding TPs of CECs. 6PPD-d9 was obtained by in-house H/D exchange with favorable reaction conditions, and the impurities were carefully studied. Incomplete deuteride, for instance, 6PPD-d8 in this study, constitutes a major part of the impurities. Nevertheless, it has few adverse effects on the 2H-SIAM pipeline in discovering TPs of 6PPD. The 2H-SIAM pipeline annotated 9 TPs of 6PPD, and commercial standards further confirmed the annotated 6PPDQ (2-anilino-5-(4-methylpentan-2-ylamino)cyclohexa-2,5-diene-1,4-dione) and PPPD (N-phenyl-p-phenylenediamine). Additionally, a possible new formation mechanism for 6PPDQ was proposed, highlighting the performance of the strategy. In summary, this study highlighted a new strategy for discovering the TPs of CECs and broadening the application of SIAM in environmental studies.


Asunto(s)
Benzoquinonas , Fenilendiaminas , Contaminantes Químicos del Agua , Isótopos , Metabolómica/métodos , Estándares de Referencia , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Medición de Intercambio de Deuterio/métodos , Fenilendiaminas/análisis , Fenilendiaminas/metabolismo , Benzoquinonas/análisis , Benzoquinonas/metabolismo , Biotransformación
11.
Mol Cancer Res ; 21(10): 1064-1078, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37409966

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of lethal kidney cancer. Reprogramming of fatty acid and glucose metabolism resulting in the accumulation of lipids and glycogen in the cytoplasm is a hallmark of ccRCC. Here, we identified a micropeptide ACLY-BP encoded by the GATA3-suppressed LINC00887, which regulated lipid metabolism and promoted cell proliferation and tumor growth in ccRCC. Mechanistically, the ACLY-BP stabilizes the ATP citrate lyase (ACLY) by maintaining ACLY acetylation and preventing ACLY from ubiquitylation and degradation, thereby leading to lipid deposition in ccRCC and promoting cell proliferation. Our results may offer a new clue for the therapeutic approaches and the diagnostic assessment for ccRCC. IMPLICATIONS: This study identifies ACLY-BP encoded by LINC00887 as a lipid-related micropeptide that stabilizes ACLY to generate acetyl-CoA, driving lipid deposition and promoting cell proliferation in ccRCC.

12.
Bioresour Technol ; 381: 129137, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37164228

RESUMEN

N2O can be easily produced during the co-composting of kitchen waste (KW) and garden waste (GW). This study investigated the effects of the co-composting of KW and GW at different ratios (1:2, 1:1.5, 1:1, and 1.5:1) on the denitrifying activities, functional genes, and community composition of denitrifiers. The results showed that the denitrification activity of KW and GW at a 1:2 ratio was the lowest. The gene abundances of nirS, nirK, nosZI, and nosZII were high on days 12 and 28 under the four different ratios. Network analysis demonstrated that nosZ-type denitrifiers could construct a complex and reciprocal bacterial network to promote the reduction of N2O to N2. Mantel test results revealed that nirS-, nirK-, nosZI-, and nosZII-type denitrifiers were significantly positively correlated with pH, C/N, and moisture content. These findings demonstrated that composting with appropriate proportions of KW and GW could reduce N2O emissions caused by denitrification.


Asunto(s)
Compostaje , Desnitrificación , Jardines , Óxido Nitroso/análisis , Bacterias/genética , Suelo/química , Microbiología del Suelo
13.
Sci Total Environ ; 887: 164034, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37178840

RESUMEN

Dam construction is regarded as the greatest anthropogenic disturbance in aquatic ecosystems, and it promotes denitrification, through which large N2O emissions occur. However, the effect of dams on N2O producers and other N2O-reducing microorganisms (especially for nosZ II), and the associated denitrification rates remain poorly understood. This study systematically investigated the spatial variation of potential denitrification rates in dammed river sediments in winter and summer and the microbial processes driving N2O production and reduction. Sediments in the transition zone of dammed rivers were found to be critical for N2O emission potential, with lower potential denitrification rate and N2O production rate in winter than in summer. In dammed river sediments, the dominant N2O-producing microorganisms and N2O-reducers were nirS-harboring bacteria and nosZ I-harboring bacteria, respectively. Diversity analysis showed that diversity of N2O-producing did not differ significantly between upstream and downstream sediments, whereas the population size and diversity of N2O-reducing microbial communities in upstream sediments significantly decreased, leading to biological homogenization. Further ecological network analysis revealed that the ecological network of nosZ II microbes was more complex than that of nosZ I microbes, and both exhibited more cooperation in the downstream sediments than in the upstream sediments. Mantel analysis showed that the potential N2O production rate was mainly influenced by electrical conductivity (EC), NH4+, and TC content, and that higher nosZ II/nosZ I ratios contributed to improved N2O sinks in dammed river sediments. Moreover, the Haliscomenobacter genus from the nosZ II-type community in the downstream sediments contributed significantly to N2O reduction. Collectively, this study elucidates the diversity and community distribution of nosZ-type denitrifying microorganisms influenced by dams, and also highlights the non-negligible role played by nosZ II-containing microbial groups in mitigating N2O emissions from dammed river sediments.


Asunto(s)
Desnitrificación , Microbiota , Óxido Nitroso , Bacterias , Ríos/química , Microbiología del Suelo
14.
Opt Express ; 31(6): 9362-9375, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157508

RESUMEN

Linear optical sampling (LOS) is one of the most powerful techniques for high-speed signal monitoring. To measure the data-rate of signal under test (SUT) in optical sampling, multi-frequency sampling (MFS) was proposed. However, the measurable data-rate range of the existing method based on MFS is limited, which makes it very difficult to measure the data-rate of high-speed signals. To solve the above problem, a range selectable data-rate measurement method based on MFS in LOS is proposed in this paper. Through this method, the measurable data-rate range can be selected to match the data-rate range of SUT and the data-rate of SUT can be measured precisely, independently of the modulation format. What's more, the sampling order can be judged using the discriminant in the proposed method, which is key for plotting eye diagrams with correct time information. We experimentally measure the baud-rates of PDM-QPSK signal from 800 MBaud to 40.8 GBaud in different ranges and judge the sampling orders. The relative error of measured baud-rate is less than 0.17% while the error vector magnitude (EVM) is less than 0.38. Compared with the existing method, under the same sampling cost, our proposed method realizes the selectivity of the measurable data-rate range and the judgment of sampling order, greatly extends the measurable data-rate range of SUT. Hence, the data-rate measurement method with selectable range has great potential for high-speed signal data-rate monitoring.

16.
Environ Technol ; 44(17): 2617-2630, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35099355

RESUMEN

Ozone is widely used to inactivate bacteria, fungi, and viruses. In recent years, the treatment of itchy skin diseases (eczema and atopic dermatitis) using trace ozone has also received attention. However, the feasibility of using trace ozone to replace personal care products (PCPs) has rarely been analyzed. In this study, the applicability of trace ozone was evaluated in terms of its efficiency for microbial inactivation in three types of skin microbiomes, cleaning performance on simulated human hair and epidermis, safety for simulated human hair, and contribution to emission reduction. The results revealed that at a 10:1 ratio of ozonated water to bacterial suspension, the inactivation ratios of Malassezia, C. albicans, and S. epidermidis reached 99.63%, 83.47%, and 100%, respectively. In addition, the cleaning performance of an ozone solution (0.4 mg/L) for simulated human skin contaminated with carbon black and sebum could reach 95.89% and 95.63%, respectively, with 5 min of washing. The average scores were 0.40 and 0.37 after 5 min and 10 min of ozone treatments, respectively, indicating that trace ozone does not significantly damage simulated human hair. Results also revealed that the total emissions of COD, TP, and TN would be reduced by 1.29×106, 3.55×103, and 3.63×103 mg/ (household · year), respectively, if PCPs are replaced by trace ozone. In short, our findings indicate that trace ozone is a potential alternative to PCPs. By replacing PCPs with trace ozone, the use of synthetic chemical products can be reduced and carbon emissions from oil extraction can be countered.


Asunto(s)
Cosméticos , Ozono , Humanos , Agua , Hongos , Cosméticos/farmacología
17.
Sci Total Environ ; 863: 160997, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36535477

RESUMEN

Aquatic environment factors often influence and regulate the direction of phosphorus (P) flow at the sediment-water interface (SWI). High pH and low DO, common in eutrophic lakes, would induce large releases of P from sediment, and thus cause the negative effect on the efficiency of some P-passivators. Hence, the development of P passivators that could function over a wide range of pH condition and redox state in the overlaying water with reduced undesirable side effects is critical for the eutrophic lake remediation. In the present study, a calcium (Ca)/aluminum (Al) composite (CA) and a lanthanum (La)/Ca/Al composite (LCA) were prepared for P immobilization in lake sediments, using calcium and lanthanum coprecipitated with aluminum. CA and LCA were shown to have good P sorption performance at pH 4-11, particularly at pH 8-11. Furthermore, CA and LCA have an ability to correct the pH of water that deviates from neutral. The maximum P adsorption (Qmax) of sediment amended by 4 % CA and 4 % LCA increased by 83 % and 103 %, and their equilibrium P concentration (EPC0) decreased by 76 % and 88 %, respectively. Under various pH and DO conditions, the P concentration in overlying water was significantly decreased by CA and LCA amendment, and their addition could effectively counteract the P release from sediments induced by high pH and low DO. The mechanisms of P immobilization in amended sediments under various pH and DO levels are primarily the conversion of reactive P to stable P. The P immobilization performance of CA and LCA could cope with a wide range of pH and redox conditions in eutrophic lakes, and they would help to correct extreme pH values, thus they are expected to be a new generation of commercial P-passivators.

18.
Sci Total Environ ; 864: 161167, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36572300

RESUMEN

The recent discovery of complete ammonia oxidizers (comammox) has fundamentally changed our understanding of nitrification. However, studies on the occurrence and activity of comammox bacteria and their contribution to nitrification remain unclear. Here, we investigated the abundance, activity, and diversity of comammox bacteria and their contribution to nitrification in sediments from dammed rivers in winter and summer. Our results indicated that comammox clade A was ubiquitous in all sediment samples and the community structure in comammox varied between the upper and lower reaches, but not on the time scale (winter and summer). Comammox activity in the dammed river sediments in summer was prominently higher than in winter (summer: 1.08 ±â€¯0.52; winter: 0.197 ±â€¯0.148 mg N kg-1 day-1). Furthermore, the activity of comammox bacteria in summer appeared higher in the vicinity of the dammed river and in the Sanjiang estuary, which is located downstream of the dammed river. The activity of ammonia-oxidizing bacteria (AOB) (0.77 ±â€¯0.478 mg N kg-1 day-1) was higher compared to comammox (0.639 ±â€¯0.588 mg N kg-1 day-1) and ammonia-oxidizing archaea (AOA) (0.026 ±â€¯0.022 mg N kg-1 day-1) in both winter and summer. In terms of contribution to the nitrification process, AOB (winter: 67.13 ±â€¯12.21 %; summer: 50.57 ±â€¯16.14 %) outperformed comammox (winter: 28.59 ±â€¯12.51 %; summer: 48.38 ±â€¯16.62 %) and AOA (winter: <7.39 %; summer: <2.09 %). These findings indicated that the nitrification process in dammed river sediments was mainly dominated by AOB. Additionally, comammox activity was significantly affected by temperature and NH4+, suggesting that these variables were key determinants of the niche partitioning of comammox. Collectively, our findings provide novel perspectives into the widespread distribution and contribution of comammox to nitrification in dammed river ecosystems, thus broadening our understanding of the nitrification processes.


Asunto(s)
Betaproteobacteria , Nitrificación , Ecosistema , Amoníaco , Oxidación-Reducción , Filogenia , Microbiología del Suelo , Bacterias , Archaea
19.
J Foot Ankle Surg ; 62(3): 437-443, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36404256

RESUMEN

Comminuted fractures of the calcaneus are relatively common and generally require surgical treatment. The quality of fracture reduction is crucial. The extended lateral approach (ELA) can better expose the fracture end and facilitate the reduction of the fracture, while it has a higher risk of postoperative skin complications. In this study, the ELA was adopted, and the calcaneal comminuted fractures were treated with circular external fixator assisted reduction to achieve the purpose of good reduction of the fracture and fewer skin complications. During 64 months, a total of 61 cases of unilateral calcaneal fractures were treated by the same surgeon and followed up for 19.28 ± 5.28 months. During the operation, a circular external fixator was employed to fix the midfoot and the distal end of the tibia, and the calcaneal tubercle; then, the calcaneal tubercle was distracted to restore the 3-dimensional structure of the calcaneus. The ELA was utilized to reduce the articular surface fracture. The fracture was fixated with a locking plate. Postoperative radiographs were regularly reviewed. Meanwhile, Böhler's angle and Gissane's angle were measured. Visual analogue scale and American Orthopedic Foot and Ankle Society Score assessments were performed at the final follow-up. All fractures healed. The mean preoperative Böhler's angle was 9.3 ± 10.1 degrees; the mean Gissane's angle was 110.5 ± 14.7 degrees; the immediate postoperative mean Böhler's angle was 31.3 ± 5.5 degrees; mean Gissane's angle was 110.9 ± 5.9 degrees. Local superficial necrosis of surgical incision occurred in 2 cases, which healed well after dressing changes. Skin necrosis appeared in 1 case, where debridement and local flap transfer were performed. At the final follow-up, the mean visual analogue scale score was 1.48 ± 1.30, and the mean American Orthopedic Foot and Ankle Society Score was 90.16 ± 7.19. The ELA combined with a circular external fixator to assist in the reduction of calcaneal fractures achieved good reduction quality and effectively reduced postoperative complications.


Asunto(s)
Calcáneo , Traumatismos de los Pies , Fracturas Óseas , Fracturas Conminutas , Fracturas Intraarticulares , Humanos , Calcáneo/cirugía , Fracturas Conminutas/diagnóstico por imagen , Fracturas Conminutas/cirugía , Fijación Interna de Fracturas/métodos , Resultado del Tratamiento , Fracturas Óseas/cirugía , Fracturas Intraarticulares/diagnóstico por imagen , Fracturas Intraarticulares/cirugía , Fijadores Externos , Traumatismos de los Pies/cirugía , Estudios Retrospectivos
20.
Environ Sci Pollut Res Int ; 30(5): 12125-12137, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36107294

RESUMEN

Although the addition of triclosan (TCS) in consumer products has been strictly restricted, its continuous applications in hospitals and other medical facilities and its numerous residues still pose a potential risk to aquatic organisms and aquatic ecosystems. In this study, we investigated the growth, biochemical alterations, and physiological responses of Chlorella vulgaris exposed to different concentrations of TCS. The potential toxicity mechanisms associated with excessive production of reactive oxygen species (ROS) and disruption of photosynthetic system II (PSII) were also analyzed. The results indicated that the growth, cellular ultrastructure, and physiology of C. vulgaris were severely affected by TCS in a dose-effect dependent manner. TCS inhibited the growth of C. vulgaris, leading to mitochondria enlargement, the disordering of the arrangement of thylakoids, cell wall rupture, organelles loss, and the cytoplasm lysis. TCS induced severe oxidative damage characterized by ROS accumulation, elevated malondialdehyde (MDA), and up-regulation of antioxidant enzyme activities. Moreover, in TCS-induced algal cells, the main sites of ROS accumulation were chloroplasts, mitochondria, and cell membranes, with ROS accumulating most in the mitochondria. In addition, TCS caused damage to the reaction center (RC inactivation), donor side (OEC damage), and accepted side (electron transport from QA to QB) of PSII in C. vulgaris, leading to inhibition of photosynthetic activity. These results could provide novel insights into the mechanisms of TCS-induced ROS accumulation and photosynthetic inhibition in C. vulgaris, which would contribute to a deep understanding of TCS toxicity on algae.


Asunto(s)
Chlorella vulgaris , Triclosán , Chlorella vulgaris/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triclosán/toxicidad , Triclosán/metabolismo , Ecosistema , Fotosíntesis , Estrés Oxidativo , Antioxidantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...