Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202400160, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38596908

RESUMEN

Capturing carbon dioxide (CO2) from flue gases is a crucial step towards reducing CO2 emissions. Among the various carbon capture methods, facilitated transport membranes (FTMs) have emerged as a promising technology for CO2 capture owing to their high efficiency and low energy consumption in separating CO2. However, FTMs still face the challenge of losing mobile carriers due to weak interaction between the carriers and membrane matrix. Herein, we report a sulfonated chitosan (SCS) gel membrane with confined amine carriers for effective CO2 capture. In this structure, diethylenetriamine (DETA) as a CO2-mobile carrier is confined within the SCS gel membrane via electrostatic forces, which can react reversibly with CO2 and thus greatly facilitate its transport. The SCS ion gel membrane allows for the fast diffusion of amine carriers within it while blocking the diffusion of nonreactive gases, like N2. Thus, the prepared membrane exhibits exceptional CO2 separation capabilities when tested under simulated flue gas conditions with CO2 permeance of 1155 GPU and an ultra-high CO2/N2 selectivity of above 550. Moreover, the membrane retains a stable separation performance during the 170 h continuous test. The excellent CO2 separation performance demonstrates the high potential of gel membranes for CO2 capture from flue gas.

2.
ACS Appl Mater Interfaces ; 16(13): 17016-17024, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38514388

RESUMEN

Crystalline porous metal-organic materials are ideal building blocks for separation membranes because of their molecular-sized pores and highly ordered pore structure. However, creating ultrathin, defect-free crystalline membranes is challenging due to inevitable grain boundaries. Herein, we reported an amorphous metal-organic hybrid (MOH) membrane with controlled microporosity. The synthesis of the MOH membrane entails the use of titanium alkoxide and organic linkers containing di/multicarboxyl groups as monomers in the polymerization reaction. The resultant membranes exhibit similar microporosity to existing molecular sieve materials and high chemical stability against harsh chemical environments owing to the formation of stable Ti-O bonds between metal centers and organic linkers. An interfacial polymerization is developed to fabricate an ultrathin MOH membrane (thickness of the membrane down to 80 nm), which exhibits excellent rejections (>98% for dyes with molecular weights larger than 690 Da) and high water permeance (55 L m-2 h-1 bar-1). The membranes also demonstrate good flexibility, which greatly improves the processability of the membrane materials.

3.
Nat Commun ; 15(1): 238, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172144

RESUMEN

The demand for lithium extraction from salt-lake brines is increasing to address the lithium supply shortage. Nanofiltration separation technology with high Mg2+/Li+ separation efficiency has shown great potential for lithium extraction. However, it usually requires diluting the brine with a large quantity of freshwater and only yields Li+-enriched solution. Inspired by the process of selective ion uptake and salt secretion in mangroves, we report here the direct extraction of lithium from salt-lake brines by utilizing the synergistic effect of ion separation membrane and solar-driven evaporator. The ion separation membrane-based solar evaporator is a multilayer structure consisting of an upper photothermal layer to evaporate water, a hydrophilic porous membrane in the middle to generate capillary pressure as the driving force for water transport, and an ultrathin ion separation membrane at the bottom to allow Li+ to pass through and block other multivalent ions. This process exhibits excellent lithium extraction capability. When treating artificial salt-lake brine with salt concentration as high as 348.4 g L-1, the Mg2+/Li+ ratio is reduced by 66 times (from 19.8 to 0.3). This research combines ion separation with solar-driven evaporation to directly obtain LiCl powder, providing an efficient and sustainable approach for lithium extraction.

4.
Angew Chem Int Ed Engl ; 63(7): e202315931, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38050465

RESUMEN

Rechargeable Li-Cl2 battery is a promising high energy density battery system. However, reasonable cycle life could only be achieved under low specific capacities due to the sluggish oxidation of LiCl to Cl2 . Herein, we propose an amine-functionalized covalent organic framework (COF) with catalytic activity, namely COF-NH2 , that significantly decreases the oxidation barrier of LiCl and accelerates the oxidation kinetics of LiCl in Li-Cl2 cell. The resulting Li-Cl2 cell using COF-NH2 (Li-Cl2 @COF-NH2 ) simultaneously exhibits low overpotential, ultrahigh discharge capacity up to 3500 mAh/g and a promoted utilization ratio of deposited LiCl at the first cycle (UR-LiCl) of 81.4 %, which is one of the highest reported values to date. Furthermore, the Li-Cl2 @COF-NH2 cell could be stably cycled for over 200 cycles when operating at a capacity of 2000 mAh/g at -20 °C with a Coulombic efficiency (CE) of ≈100 % and a discharge plateau of 3.5 V. Our superior Li-Cl2 batteries enabled by organocatalyst enlighten an arena towards high-energy storage applications.

5.
J Am Chem Soc ; 145(50): 27877-27885, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38053318

RESUMEN

Rechargeable Li-Cl2 batteries are recognized as promising candidates for energy storage due to their ultrahigh energy densities and superior safety features. However, Li-Cl2 batteries suffer from a short cycle life and low Coulombic efficiency (CE) at a high specific cycling capacity due to a sluggish and insufficient Cl2 supply during the redox reaction. To achieve Li-Cl2 batteries with high discharge capacity and CE, herein, we propose and design an imine-functionalized porous organic nanocage (POC) to enrich Cl2 molecules. Based on density functional theory (DFT) calculations, the imine group sites in host cages strongly interact with Cl2 molecules, facilitating the rapid capture of Cl2. As a result, the output capacity of the Li-Cl2 battery using POC (Li-Cl2@POC) is significantly boosted, achieving an ultrahigh discharge capacity of 4000 mAh/g at ∼100% CE. Benefiting from the designed POC, the highest utilization ratio of deposited LiCl at the first cycle in the Li-Cl2@POC battery reaches as high as 85%, superior to all reported values. The Li-Cl2@POC battery exhibits excellent electrochemical performance even at low temperatures, delivering stable cycling over 200 cycles under a capacity of 2000 mAh/g at -20 °C with a voltage plateau of 3.5 V and an average CE of 99.7%. We also demonstrate that the Li-Cl2@POC cells can be assembled and well-operated in a dry room, showing advantages for mass production. Our designed POC promotes the practical deployment of rechargeable Li-Cl2 batteries.

6.
ACS Appl Mater Interfaces ; 15(43): 50196-50205, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870122

RESUMEN

Hydrogel-based evaporators are a promising strategy to obtain freshwater from seawater and sewage. However, the time-consuming and energy-consuming methods used in hydrogel preparation, as well as their limited scalability, are major factors that hinder the development of a hydrogel-based evaporator. Herein, a facile and scalable strategy was designed to prepare a hydrogel-coated evaporator to realize efficient solar-driven water evaporation. The hydrogel coating layer is composed of a robust 3D network formed by tannic acid (TA) and poly(vinyl alcohol) (PVA) through a hydrogen bond. With the assistance of TA surface modifier, carbon black (CB) is uniformly distributed within the hydrogel matrix, endowing the coating with remarkable photothermal properties. In addition, Fe3+ is deposited on the surface of the hydrogel coating through metal coordination with TA, further improving the light absorption of the coating. Due to the synergistic effect of CB and Fe3+, the hydrogel-coated foam exhibited excellent photothermal properties. The water evaporation rate reached 3.64 kg m-2 h-1 under 1 sun irradiation. Because of the hydration ability of PVA hydrogel and the large porous structure of the foam, the hydrogel-coated foam demonstrated excellent antifouling performance and salt resistance. This study provides a facile method for designing and manufacturing high-performance solar-driven water evaporation materials.

7.
ACS Nano ; 16(12): 20786-20795, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36475618

RESUMEN

Membrane fouling is a persistent and crippling challenge for oily wastewater treatment due to the high susceptibility of membranes to contamination. A feasible strategy is to design a robust and stable hydration layer on the membrane surface to prevent contaminates. A hydrogel illustrates a distinct category of materials with outstanding antifouling performance but is limited by its weak mechanical property. In this research, we report a reinforced hydrogel on a membrane by in situ growing ultrasmall hydrophilic Cu3(PO4)2 nanoparticles in a copper alginate (CuAlg) layer via metal-ion-coordination-mediated mineralization. The embeddedness of hydrophilic Cu3(PO4)2 nanoparticle with a size of 3-5 nm endows the CuAlg/Cu3(PO4)2 composite hydrogel with enhanced mechanical property as well as reinforced hydrate ability. The as-prepared CuAlg/Cu3(PO4)2 modified membrane exhibits a superior oil-repulsive property and achieves a nearly zero flux decline for separating surfactant stabilized oil-in-water emulsions with a high permeate flux up to ∼1330 L m-2 h-1 bar-1. Notably, it is capable of keeping similar permeate flux for both pure water and oil-in-water emulsions during filtration, which is superior to the currently reported membranes, indicating its super-antifouling properties.

8.
ACS Nano ; 16(5): 8329-8337, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35549179

RESUMEN

Water-soluble volatile organic compounds (VOCs) are among the most difficult-to-treat species during wastewater treatment. The current purification and removal of high-concentration VOCs still rely on the energy-consuming distillation and high-pressure driven reverse osmosis technology. There is an urgent need for an advanced technology that can effectively remove high-concentration VOCs from water. Here, we report a metal-organic framework (MOF)/polyaniline (PANI) nanofiber array composite photothermal membrane for removal of high-concentration VOCs from water via molecular sieving during a solar-driven evaporation process. The modified zeolitic imidazole framework-8 (ZIF-8) layer grown on a PANI nanofiber array acts as a molecular sieving layer to evaporate water but intercept VOCs. The composite membrane exhibits high VOCs rejection and a high-water evaporation rate for water containing different concentrations of VOCs. When treating water containing VOCs with a concentration of up to 400 mg L-1, the VOCs rejection rate is up to 99% and the water evaporation rate is 1.0 kg m-2 h-1 under 1 sun irradiation (1 kW m-2). Our work effectively combines the molecular sieve effect with a solar-driven evaporation process, which provides an effective strategy for the treatment of water containing VOCs.

9.
ACS Appl Mater Interfaces ; 12(43): 49101-49110, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33063985

RESUMEN

In the mixed matrix membrane (MMM), the interface between the filler and the polymer matrix will directly affect the gas separation performance of the membranes. Reasonable interfacial design in MMMs is thus important and necessary. In this work, metal-organic coordination interaction is used to construct the interface in metal-organic framework (MOF) nanosheet-based polyimide MMMs where ultrathin Co-benzenedicarboxylate MOF nanosheets (CBMNs) with a thickness less than 5 nm and a lateral size more than 5 µm are synthesized as fillers and a carboxyl-functionalized polyimide (6FDA-durene-DABA) is used as a polymer matrix. Because of the high aspect ratio (>1000) of CBMNs, abundant metal-organic coordination bonds are formed between Co2+ in CBMNs and the -COOH group in 6FDA-durene-DABA. As a result, the 6FDA-durene-DABA/CBMN MMMs exhibit improved separation performance for the CO2/CH4 and H2/CH4 gas pairs with H2/CH4 and CO2/CH4 selectivities up to 42.0 ± 4.0 and 33.6 ± 3.0, respectively. The enhanced interfacial interaction leads to the comprehensive separation performance of CO2/CH4 and H2/CH4 gas pairs approaching or surpassing the 2008 Robeson upper bound. In addition, the CO2 plasticization pressure of the MMMs is significantly enhanced up to ∼20 bar, which is 2 times that of the pure 6FDA-durene-DABA membrane. When separating a mixed gas of CO2/CH4, the selectivity of CO2/CH4 remains stable at around 23 and the CO2 permeability keeps around 400 barrer during the long-term test.

10.
Nano Lett ; 20(8): 5821-5829, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32628856

RESUMEN

Despite the commercial success of thin film composite polyamide membranes, further improvements to the water permeation of polyamide membranes without degradation in product water quality remain a great challenge. Herein, we report the fabrication of an interfacially polymerized polyamide nanofiltration membrane with a novel 3D honeycomb-like spatial structure, which is formed from a tobacco mosaic virus (TMV) porous protein nanosheet-coated microfiltration membrane support. TMV nanosheets with uniform pores and appropriate hydrophilicity deposited inside the support membrane pores facilitate the construction of a localized water-oil reaction interface with evenly distributed monomers and guide the formation of a defect-free polyamide layer with a spatial structure that copies the geometry of the membrane cavities. Such a 3D morphology possesses ultrahigh specific surface area, leading to unprecedented membrane water permeance as high as 84 L m-2 h-1 bar-1, high MgSO4 rejection of 98%, and monovalent/divalent ion sieving selectivity up to 89.


Asunto(s)
Membranas Artificiales , Nylons , Polimerizacion , Porinas , Porosidad
11.
Adv Mater ; 32(26): e1908291, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32363647

RESUMEN

Hunger and chronic undernourishment impact over 800 million people, which translates to ≈10.7% of the world's population. While countries are increasingly making efforts to reduce poverty and hunger by pursuing sustainable energy and agricultural practices, a third of the food produced around the globe still is wasted and never consumed. Reducing food shortages is vital in this effort and is often addressed by the development of genetically modified produce or chemical additives and inedible coatings, which create additional health and environmental concerns. Herein, a multifunctional bio-nanocomposite comprised largely of egg-derived polymers and cellulose nanomaterials as a conformal coating onto fresh produce that slows down food decay by retarding ripening, dehydration, and microbial invasion is reported. The coating is edible, washable, and made from readily available inexpensive or waste materials, which makes it a promising economic alternative to commercially available fruit coatings and a solution to combat food wastage that is rampant in the world.


Asunto(s)
Películas Comestibles , Almacenamiento de Alimentos/métodos , Frutas/química , Nanocompuestos/química , Celulosa/química , Curcumina/química , Clara de Huevo/química , Yema de Huevo/química , Tensión Superficial , Viscosidad
12.
Science ; 367(6478): 667-671, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32029624

RESUMEN

Robust, gas-impeding water-conduction nanochannels that can sieve water from small gas molecules such as hydrogen (H2), particularly at high temperature and pressure, are desirable for boosting many important reactions severely restricted by water (the major by-product) both thermodynamically and kinetically. Identifying and constructing such nanochannels into large-area separation membranes without introducing extra defects is challenging. We found that sodium ion (Na+)-gated water-conduction nanochannels could be created by assembling NaA zeolite crystals into a continuous, defect-free separation membrane through a rationally designed method. Highly efficient in situ water removal through water-conduction nanochannels led to a substantial increase in carbon dioxide (CO2) conversion and methanol yield in CO2 hydrogenation for methanol production.

13.
Nano Lett ; 18(10): 6563-6569, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30182720

RESUMEN

Highly permeable and precisely size-selective membranes are the subject of continuous pursuit for energy-efficient separation of fine chemicals. However, challenges remain in the fabrication of an ultrathin selective layer with homogeneous pores, in particular, with the pore sizes in the 1-10 nm range. We report the design of a free-standing porous nanosheet assembled with a single layer of proteins. Tobacco mosaic virus mutant (TMVm), a cylinder-shaped protein containing an inner pore of 4 nm in diameter, was cross-linked via a Cu2+-catalyzed disulfide-bond-forming reaction along the 2D orientation. By such a design, ultralarge single-layer TMVm nanosheets extending over tens of micrometers in width and with well-defined nanopores were successfully developed. A ∼40 nm thick ultrafiltration membrane laminated by the single-layer TMVm nanosheets through simple vacuum filtration accomplished the precise separation of ∼4 nm sized substances. Meanwhile, the membrane exhibited water permeance up to ∼7000 L m-2 h-1 bar-1, which is an order of magnitude improvement compared with traditional ultrafiltration membranes with a similar rejection profile.

14.
ACS Appl Mater Interfaces ; 10(33): 28210-28218, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30053370

RESUMEN

Superhydrophobic membranes with extreme liquid water repellency property are good candidates for waterproof and breathable application. Different from the mostly used strategies through either mixing or postmodifying base membranes with perfluorinated compounds, we report in this work a facile methodology to fabricate superhydrophobic microporous membranes made up of pure poly(vinylidene fluoride) (PVDF) via a high-humidity induced electrospinning process. The superhydrophobic property of the PVDF microporous membrane is contributed by its special microsphere-fiber interpenetrated rough structure. The effective pore size and porosity of the PVDF membranes could be well tuned by simply adjusting the PVDF concentrations in polymer solutions. The membrane with optimized superhydrophobicity and porous structure exhibits improved waterproof and breathable performance with hydrostatic pressure up to 62 kPa, water vapor transmission rate (WVT rate) of 10.6 kg m-2 d-1, and simultaneously outstanding windproof performance with air permeability up to 1.3 mm s-1. Our work represents a rather simple and perfluorinated-free strategy for fabricating superhydrophobic microporous membranes, which matches well with the environmentally friendly requirement from the viewpoint of practical application.

15.
ChemSusChem ; 11(5): 916-923, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29349873

RESUMEN

Carbon molecular sieve (CMS)-based membranes have attracted great attention because of their outstanding gas-separation performance. The polymer precursor is a key point for the preparation of high-performance CMS membranes. In this work, a microporous polyimide precursor containing a Tröger's base unit was used for the first time to prepare CMS membranes. By optimizing the pyrolysis procedure and the soaking temperature, three TB-CMS membranes were obtained. Gas-permeation tests revealed that the comprehensive gas-separation performance of the TB-CMS membranes was greatly enhanced relative to that of most state-of-the-art CMS membranes derived from polyimides reported so far.


Asunto(s)
Carbono , Gases/aislamiento & purificación , Membranas Artificiales , Resinas Sintéticas , Porosidad , Pirólisis , Temperatura
16.
ACS Nano ; 12(1): 795-803, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29298377

RESUMEN

Developing an effective and sustainable solution for cleaning up or separating oily water is highly desired. In this work, we report a completely inorganic mesh membrane made up of cupric phosphate (Cu3(PO4)2) in a special intersected nanosheets-constructed structure. Combing the hierarchical structure with strong hydration ability of Cu3(PO4)2, the nanosheets-wrapped membrane exhibits a superior superhydrophilic and underwater anti-oil-fouling and antibio-fouling property for efficient oil/water separation to various viscous oils such as heavy diesel oil, light crude oil, and even heavy crude oil with underwater oil contact angles (CAs) all above 158° and nearly zero underwater oil adhesive force even when a large preload force of up to 400 µN was applied on the oil droplet. Simultaneously, the membrane exhibits a high chemical and thermal stability and outstanding salt tolerance. Continuous separation operated on a cross-flow filtration apparatus demonstrates a large separation capacity and long-term stability of the membrane during treating a 2000 L crude oil/water mixture with constantly stable permeating flux of ∼4000 L/m2 h and oil content in the filtrate below 2 ppm. The excellent anti-oil-fouling property, high separation capacity, and easily scaled-up preparation process of the membrane show great potential for practical application in treating oily wastewater.

17.
Adv Mater ; 28(17): 3399-405, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26936293

RESUMEN

High-performance metal-organic framework (MOF)/polyimide (PI) mixed matrix membranes (MMMs) are fabricated by a facile strategy by designing the MOF/PI matrix interface via poly dopamine coating. The overall separation performance of the designed MMMs surpasses the state-of-the-art 2008 Robeson upper bound for the H2 /CH4 and H2 /N2 gas pairs and approaches the 2008 upper bound for the O2 /N2 gas pair.

18.
Langmuir ; 31(32): 8795-801, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26203777

RESUMEN

Exploration of an effective route to achieve the controlled growth of two-dimensional (2D) molecular crystal is of scientific significance yet greatly underdeveloped due to the complexity of weak intermolecular interactions, thus leading to difficulty of inducing anisotropic 2D growth. We report here a facile nanowire oriented on-surface growth strategy for the fabrication of cystine crystalline nanosheets with finely controlled thickness (1.1, 1.9, 2.9, and 4.8 nm which correspond to one layer, two layers, three layers, and five layers of crystal cystine, respectively) and large areas (>100 µm(2)). The cystine crystalline nanosheets display chirality delivered by chiral cysteine monomers, either l-cysteine or d-cysteine. The chiral nanosheets with structural precision and chemical diversity could serve as a novel 2D platform for constructing advanced hybrid materials.


Asunto(s)
Cobre/química , Cistina/química , Hidróxidos/química , Nanocables/química , Cristalización , Hidróxidos/síntesis química , Tamaño de la Partícula , Propiedades de Superficie
19.
Chemistry ; 19(7): 2523-30, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23280603

RESUMEN

A facile anion-exchange precipitation method was used to synthesize bifunctional Ag/AgBr/Co-Ni-NO(3) layered double hydroxide (LDH) nanocomposites by adding AgNO(3) solution to a suspension of Co-Ni-Br LDH. The Ag/AgBr nanoparticles were highly dispersed on the sheets of Co-Ni-NO(3) LDH. The prepared nanocomposites were used to adsorb and photocatalytically degrade organic pollutants from water. Without light illumination, the nanocomposites quickly adsorbed methyl orange, and the adsorptive capacity, which can reach 230 mg g(-1), is much higher than those of Co-Ni-Br LDH, Ag/AgBr, and activated carbon. The photocatalytic activities of the nanocomposites for the removal of dyes and phenol are higher than those of Co-Ni-Br LDH and Ag/AgBr. The proposed method can be applied to prepare other LDH/silver salt composites. The high absorptive capacity and good photocatalytic activity of such nanostructures could have wide applications in wastewater treatment.


Asunto(s)
Cobalto/química , Hidróxidos/química , Nanocompuestos/química , Nanopartículas/química , Níquel/química , Compuestos de Plata/química , Adsorción , Catálisis , Luz , Fotoquímica , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...