Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Adv Appl Microbiol ; 127: 45-142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763529

RESUMEN

Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.


Asunto(s)
Polisacáridos Fúngicos , Polisacáridos Fúngicos/química , Humanos , Animales , Agaricales/química , Agaricales/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Factores Inmunológicos/química , Antiinflamatorios/química , Antiinflamatorios/farmacología
2.
ACS Nano ; 18(20): 12981-12993, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38717035

RESUMEN

Aqueous aluminum-ion batteries (AAIBs) are considered as a promising alternative to lithium-ion batteries due to their large theoretical capacity, high safety, and low cost. However, the uneven deposition, hydrogen evolution reaction (HER), and corrosion during cycling impede the development of AAIBs, especially under a harsh environment. Here, a hydrated eutectic electrolyte (AATH40) composed of Al(OTf)3, acetonitrile (AN), triethyl phosphate (TEP), and H2O was designed to improve the electrochemical performance of AAIBs in a wide temperature range. The combination of molecular dynamics simulations and spectroscopy analysis reveals that AATH40 has a less-water-solvated structure [Al(AN)2(TEP)(OTf)2(H2O)]3+, which effectively inhibits side reactions, decreases the freezing point, and extends the electrochemical window of the electrolyte. Furthermore, the formation of a solid electrolyte interface, which effectively inhibits HER and corrosion, has been demonstrated by X-ray photoelectron spectroscopy, X-ray diffraction tests, and in situ differential electrochemical mass spectrometry. Additionally, operando synchrotron Fourier transform infrared spectroscopy and electrochemical quartz crystal microbalance with dissipation monitoring reveal a three-electron storage mechanism for the Al//polyaniline full cells. Consequently, AAIBs with this electrolyte exhibit improved cycling stability within the temperature range of -10-50 °C. This present study introduces a promising methodology for designing electrolytes suitable for low-cost, safe, and stable AAIBs over a wide temperature range.

3.
Angew Chem Int Ed Engl ; : e202405648, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660735

RESUMEN

The interfacial electric field (IEF) in the heterostructure can accelerate electron transport and ion migration, thereby enhancing the electrochemical performance of potassium-ion batteries (PIBs). Nevertheless, the quantification and modulation of the IEF for high-efficiency PIB anodes currently remains a blank slate. Herein, we achieve for the first time the quantification and tuning of IEF via amorphous carbon-coated undifferentiated cobalt-doped FeSe/Fe3Se4 heterostructure (denoted UN-CoFe4Se5/C) for efficient potassium storage. Co doping can increase the IEF in FeSe/Fe3Se4, thereby improving the electron transport, promoting the potassium adsorption capacity, and lowering the diffusion barrier. As expected, the IEF magnitude in UN-CoFe4Se5/C is experimentally quantified as 62.84 mV, which is 3.65 times larger than that of amorphous carbon-coated FeSe/Fe3Se4 heterostructure (Fe4Se5/C). Benefiting from the strong IEF, UN-CoFe4Se5/C as a PIB anode exhibits superior rate capability (145.8 mAh g-1 at 10.0 A g-1) and long cycle lifespan (capacity retention of 95.1% over 3000 cycles at 1.0 A g-1). Furthermore, this undifferentiated doping strategy can universally regulate the IEF magnitude in CoSe2/Co9Se8 and FeS2/Fe7S8 heterostructures. This work can provide fundamental insights into the design of advanced PIB electrodes.

4.
ACS Omega ; 9(13): 15689-15696, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585107

RESUMEN

Permeability is a key factor affecting efficient gas drainage from coal seams, and acidification and vibration shock are effective means to increase permeability in original low-permeability coal seams. To study the gas desorption characteristics of coking coal under the coupling effect of mining disturbance and acidification permeability enhancement, taking the coal seam of Shoushan No. 1 coal as the research object, a self-built adsorption-desorption vibration test platform was used. Acid leaching vibration coupling desorption experiments at vibration frequencies of 0, 30, 60, and 100 Hz were conducted on selected particle coals with particle sizes of 0.18-0.25 and 1-3 mm. The experimental results show that the gas desorption amount of particle coal with the same particle size first increases and then decreases with the increase of vibration frequency, among which the desorption effect is the best under 60 Hz vibration condition. Under the condition of fixed vibration frequency, the desorption amount, initial desorption velocity, and velocity attenuation coefficient of particle coal increase as the particle size decreases. Under the same particle size and vibration frequency conditions, the acid leaching and vibration of coal samples have a synergistic effect on gas desorption, which is manifested in the promotion of gas desorption on the outer surface of the coal sample and the surface of open macropores. The research can provide theoretical reference for coal seam acidification and permeability enhancement under the influence of mining disturbance.

5.
Adv Mater ; : e2401288, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558119

RESUMEN

Designing electrocatalysts with high activity and durability for multistep reduction and oxidation reactions is challenging. High-entropy alloys (HEAs) are intriguing due to their tunable geometric and electronic structure through entropy effects. However, understanding the origin of their exceptional performance and identifying active centers is hindered by the diverse microenvironment in HEAs. Herein, NiFeCoCuRu HEAs designed with an average diameter of 2.17 nm, featuring different adsorption capacities for various reactants and intermediates in Li-mediated CO2 redox reactions, are introduced. The electronegativity-dependent nature of NiFeCoCuRu HEAs induces significant charge redistribution, shifting the d-band center closer to Fermi level and forming highly active clusters of Ru, Co, and Ni for Li-based compounds adsorptions. This lowers energy barriers and simultaneously stabilizes *LiCO2 and LiCO3+CO intermediates, enhancing the efficiency of both CO2 reduction and Li2CO3 decomposition over extended periods. This work provides insights into specific active site interactions with intermediates, highlighting the potential of HEAs as promising catalysts for intricate CO2 redox reactions.

6.
Chem Commun (Camb) ; 60(38): 5038-5041, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38630532

RESUMEN

The slow Li+ transport rate in the thick sulfur cathode of the Li-S battery affects its capacity and cycling performance. Herein, Fe-doped highly ordered mesoporous silica material (Fe-HSBA-15) as a sulfur carrier of the Li-S battery shows high ion conductivity (1.10 mS cm-1) and Li+ transference number (0.77). The Fe-HSBA-15/S cell has an initial capacity of up to 1216.7 mA h g-1 at 0.2C and good stability. Impressively, at a high sulfur load of 4.34 mg cm-2, the Fe-HSBA-15/S cell still maintains an area specific capacity of 4.47 mA h cm-2 after 100 cycles. This is because Fe-HSBA-15 improves the Li+ diffusion behavior through the ordered mesoporous structure. Theoretical calculations also confirmed that the doping of iron enhances the adsorption of polysulfides, reduces the band gap and makes the catalytic activity stronger.

7.
Chem Soc Rev ; 53(8): 4154-4229, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38470073

RESUMEN

Iron-based materials with significant physicochemical properties, including high theoretical capacity, low cost and mechanical and thermal stability, have attracted research attention as electrode materials for alkali metal-ion batteries (AMIBs). However, practical implementation of some iron-based materials is impeded by their poor conductivity, large volume change, and irreversible phase transition during electrochemical reactions. In this review we critically assess advances in the chemical synthesis and structural design, together with modification strategies, of iron-based compounds for AMIBs, to obviate these issues. We assess and categorize structural and compositional regulation and its effects on the working mechanisms and electrochemical performances of AMIBs. We establish insight into their applications and determine practical challenges in their development. We provide perspectives on future directions and likely outcomes. We conclude that for boosted electrochemical performance there is a need for better design of structures and compositions to increase ionic/electronic conductivity and the contact area between active materials and electrolytes and to obviate the large volume change and low conductivity. Findings will be of interest and benefit to researchers and manufacturers for sustainable development of advanced rechargeable ion batteries using iron-based electrode materials.

8.
Adv Mater ; : e2313835, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427844

RESUMEN

Multinary metal chalcogenides hold considerable promise for high-energy potassium storage due to their numerous redox reactions. However, challenges arise from issues such as volume expansion and sluggish kinetics. Here, a design featuring a layered ternary Bi0.4 Sb1.6 Te3 anchored on graphene layers as a composite anode, where Bi atoms act as a lattice softening agent on Sb, is presented. Benefiting from the lattice arrangement in Bi0.4 Sb1.6 Te3 and structure, Bi0.4 Sb1.6 Te3 /graphene exhibits a mitigated expansion of 28% during the potassiation/depotassiation process and demonstrates facile K+ ion transfer kinetics, enabling long-term durability of 500 cycles at various high rates. Operando synchrotron diffraction patterns and spectroscopies including in situ Raman, ex situ adsorption, and X-ray photoelectron reveal multiple conversion and alloying/dealloying reactions for potassium storage at the atomic level. In addition, both theoretical calculations and electrochemical examinations elucidate the K+ migration pathways and indicate a reduction in energy barriers within Bi0.4 Sb1.6 Te3 /graphene, thereby suggesting enhanced diffusion kinetics for K+ . These findings provide insight in the design of durable high-energy multinary tellurides for potassium storage.

9.
Adv Mater ; : e2400642, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428042

RESUMEN

Achieving reversible insertion/extraction in most cathodes for aqueous aluminum ion batteries (AAIBs) is a significant challenge due to the high charge density of Al3+ and strong electrostatic interactions. Organic materials facilitate the hosting of multivalent carriers and rapid ions diffusion through the rearrangement of chemical bonds. Here, a bipolar conjugated poly(2,3-diaminophenazine) (PDAP) on carbon substrates prepared via a straightforward electropolymerization method is introduced as cathode for AAIBs. The integration of n-type and p-type active units endow PDAP with an increased number of sites for ions interaction. The long-range conjugated skeleton enhances electron delocalization and collaborates with carbon to ensure high conductivity. Moreover, the strong intermolecular interactions including π-π interaction and hydrogen bonding significantly enhance its stability. Consequently, the Al//PDAP battery exhibits a large capacity of 338 mAh g-1 with long lifespan and high-rate capability. It consistently demonstrates exceptional electrochemical performances even under extreme conditions with capacities of 155 and 348 mAh g-1 at -20 and 45 °C, respectively. In/ex situ spectroscopy comprehensively elucidates its cation/anion (Al3+ /H3 O+ and ClO4 - ) storage with 3-electron transfer in dual electroactive centers (C═N and -NH-). This study presents a promising strategy for constructing high-performance organic cathode for AAIBs over a wide temperature range.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38536957

RESUMEN

O3-type layered oxide cathodes (NaxTMO2) for sodium-ion batteries (SIBs) have attracted significant attention as one of the most promising potential candidates for practical energy storage applications. The poor Na+ diffusion kinetics is, however, one of the major obstacles to advancing large-scale practical application. Herein, we report bismuth-doped O3-NaNi0.5Mn0.5O2 (NMB) microspheres consisting of unique primary nanoplatelets with the radially oriented {010} active lattice facets. The NMB combines the advantages of the oriented and exposed electrochemical active planes for direct paths of Na+ diffusion, and the thick primary nanoplatelets for less surface parasitic reactions with the electrolyte. Consequently, the NMB cathode exhibits a long-term stability with an excellent capacity retention of 72.5% at 1C after 300 cycles and an enhanced rate capability at a 0.1C to 10C rate (1C = 240 mA g-1). Furthermore, the enhancement is elucidated by the small volume change, thin cathode-electrolyte-interphase (CEI) layer, and rapid Na+ diffusion kinetics. In particular, the radial orientation-based Bi-doping strategy is demonstrated to be effective at boosting electrochemical performance in other layered oxides (such as Bi-doped NaNi0.45Mn0.45Ti0.1O2 and NaNi1/3Fe1/3Mn1/3O2). The results provide a promising strategy of utilizing the advantages of the oriented active facets of primary platelets and secondary particles to develop high-rate layered oxide cathodes for SIBs.

11.
Angew Chem Int Ed Engl ; 63(17): e202400045, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385624

RESUMEN

Zinc ion batteries (ZIBs) exhibit significant promise in the next generation of grid-scale energy storage systems owing to their safety, relatively high volumetric energy density, and low production cost. Despite substantial advancements in ZIBs, a comprehensive evaluation of critical parameters impacting their practical energy density (Epractical) and calendar life is lacking. Hence, we suggest using formulation-based study as a scientific tool to accurately calculate the cell-level energy density and predict the cycling life of ZIBs. By combining all key battery parameters, such as the capacity ratio of negative to positive electrode (N/P), into one formula, we assess their impact on Epractical. When all parameters are optimized, we urge to achieve the theoretical capacity for a high Epractical. Furthermore, we propose a formulation that correlates the N/P and Coulombic efficiency of ZIBs for predicting their calendar life. Finally, we offer a comprehensive overview of current advancements in ZIBs, covering cathode and anode, along with practical evaluations. This Minireview outlines specific goals, suggests future research directions, and sketches prospects for designing efficient and high-performing ZIBs. It aims at bridging the gap from academia to industry for grid-scale energy storage.

12.
Angew Chem Int Ed Engl ; 63(14): e202319091, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308095

RESUMEN

Aqueous zinc-ion batteries are regarded as promising and efficient energy storage systems owing to remarkable safety and satisfactory capacity. Nevertheless, the instability of zinc metal anodes, characterized by issues such as dendrite growth and parasitic side reactions, poses a significant barrier to widespread applications. Herein, we address this challenge by designing a localized conjugated structure comprising a cyclic polyacrylonitrile polymer (CPANZ), induced by a Zn2+-based Lewis acid (zinc trifluoromethylsulfonate) at a temperature of 120 °C. The CPANZ layer on the Zn anode, enriched with appropriate pyridine nitrogen-rich groups (conjugated cyclic -C=N-), exhibits a notable affinity for Zn2+ with ample deposition sites. This zincophilic skeleton not only serves as a protective layer to guide the deposition of Zn2+ but also functions as proton channel blocker, regulating the proton flux to mitigate the hydrogen evolution. Additionally, the strong adhesion strength of the CPANZ layer guarantees its sustained protection to the Zn metal during long-term cycling. As a result, the modified zinc electrode demonstrates long cycle life and high durability in both half-cell and pouch cells. These findings present a feasible approach to designing high performance aqueous anodes by introducing a localized conjugated layer.

13.
Adv Mater ; 36(11): e2310623, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088907

RESUMEN

The practical implementation of aqueous zinc-ion batteries (AZIBs) encounters challenges such as dendrite growth, parasitic reactions, and severe decay in battery performance under harsh environments. Here, a novel hydrated eutectic electrolyte (HEE) composed of Zn(ClO4 )2 ·6H2 O, ethylene glycol (EG), and InCl3 solution is introduced to effectively extend the lifespan of AZIBs over a wide temperature range from -50 to 50 °C. Molecular dynamics simulations and spectroscopy analysis demonstrate that the H2 O molecules are confined within the liquid eutectic network through dual-interaction, involving coordination with Zn2+ and hydrogen bonding with EG, thus weakening the activity of free water and extending the electrochemical window. Importantly, cryo-transmission electron microscopy and spectroscopy techniques reveal that HEE in situ forms a zincophobic/zincophilic bilayer interphase by the dissociation-reduction of eutectic molecules. Specifically, the zincophilic interphase reduces the energy barrier for Zn nucleation, promoting uniform Zn deposition, while the zincophobic interphase prevents active water from contacting the Zn surface, thus inhibiting the side reactions. Furthermore, the relationships between the structural evolution of the liquid eutectic network and interfacial chemistry at electrode/electrolyte interphase are further discussed in this work. The scalability of this design strategy can bring benefits to AZIBs operating over a wide temperature range.

14.
Forensic Sci Med Pathol ; 20(1): 194-198, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36944826

RESUMEN

Cardiac blood cysts are rare benign tumors. It is commonly found in the heart valve and left ventricle of newborns by autopsy and is rarely seen in adults [1, 2]. The typical histopathology of cardiac blood cysts is a closed, round, blood-containing cystic mass attached to the heart valve or endocardium. This article reports a rare case of sudden death due to a giant subaortic cardiac blood cyst with coronary heart disease in an adult patient and summarizes the pathological features, aiming to provide a reference for the forensic pathological identification of cardiac blood cysts.


Asunto(s)
Enfermedad Coronaria , Quistes , Recién Nacido , Adulto , Humanos , Muerte Súbita/etiología , Muerte Súbita/patología , Quistes/patología , Enfermedad Coronaria/complicaciones , Ventrículos Cardíacos/patología , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/patología
15.
Adv Mater ; 36(4): e2307651, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010278

RESUMEN

Although various excellent electrocatalysts/adsorbents have made notable progress as sulfur cathode hosts on the lithium-sulfur (Li-S) coin-cell level, high energy density (WG ) of the practical Li-S pouch cells is still limited by inefficient Li-ion transport in the thick sulfur cathode under low electrolyte/sulfur (E/S) and negative/positive (N/P) ratios, which aggravates the shuttle effect and sluggish redox kinetics. Here a new ternary fluoride MgAlF5 ·2H2 O with ultrafast ion conduction-strong polysulfides capture integration is developed. MgAlF5 ·2H2 O has an inverse Weberite-type crystal framework, in which the corner-sharing [AlF6 ]-[MgF4 (H2 O)2 ] octahedra units extend to form two-dimensional Li-ion transport channels along the [100] and [010] directions, respectively. Applied as the cathode sulfur host, the MgAlF5 ·2H2 O lithiated by LiTFSI (lithium salt in Li-S electrolyte) acts as a fast ionic conductor to ensure efficient Li-ion transport to accelerate the redox kinetics under high S loadings and low E/S and N/P. Meanwhile, the strong polar MgAlF5 ·2H2 O captures polysulfides by chemisorption to suppress the shuttle effect. Therefore, a 1.97 A h-level Li-S pouch cell achieves a high WG of 386 Wh kg-1 . This work develops a new-type ionic conductor, and provides unique insights and new hosts for designing practical Li-S pouch cells.

16.
World Neurosurg ; 182: e171-e177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000674

RESUMEN

OBJECTIVE: The objective of this study was to determine whether abdominal fat status correlates with low back pain (LBP) and lumbar intervertebral disc degeneration (IVDD) and to identify a new anthropometric index to predict the likelihood of developing LBP. METHODS: Patients with chronic low back pain admitted to the Affiliated Hospital of Southwest Medical University from June 2022 to May 2023 were collected as the experimental group. Volunteers without LBP from June 2022 to May 2023 were also recruited as the control group. They underwent lumbar spine magnetic resonance imaging and had their body mass index (BMI) measured. Abdominal parameters were measured on T2-weighted median sagittal magnetic resonance imaging at the L3/4 level: abdominal diameter, sagittal abdominal diameter (SAD), and subcutaneous abdominal fat thickness (SAFT). Each lumbar IVDD was assessed using the Pfirrmann grading system. The differences in abdominal parameters and BMI between the experimental and control groups were compared, and the correlations between abdominal parameters, BMI, LBP, and IVDD were analyzed. RESULTS: Abdominal diameter, SAD, and SAFT had moderate-to-strong correlations with BMI. SAD was significantly associated with severe IVDD at L4-L5 and L5-S1 levels with odds ratio of 3.201 (95% confidence interval [CI]: 1.850-5.539, P < 0.001) and 1.596 (95% CI: 1.072-2.378, P = 0.021), respectively. BMI had no significant association with severe IVDD. In women, SAFT and BMI were significantly correlated with LBP; in men, only SAFT was significantly correlated with LBP. Appropriate cutoff values for men and women were 1.52 cm (area under the curve = 0.702, 95% CI: 0.615-0.789, P < 0.001) and 1.97 cm (area under the curve = 0.740, 95% CI: 0.662-0.818, P < 0.001), respectively. Men and women with SAFT of >1.52 cm and >1.97 cm, respectively, had significantly higher rates of LBP. CONCLUSIONS: SAD could predict severe IVDD better than BMI. SAFT is a better predictor of LBP than BMI, especially in men, and reliably distinguished patients with LBP from asymptomatic subjects with reliable cutoff values for men and women.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Dolor de la Región Lumbar , Masculino , Humanos , Femenino , Degeneración del Disco Intervertebral/complicaciones , Dolor de la Región Lumbar/etiología , Dolor de la Región Lumbar/complicaciones , Índice de Masa Corporal , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/patología , Imagen por Resonancia Magnética , Grasa Abdominal/diagnóstico por imagen , Disco Intervertebral/patología
17.
Regen Ther ; 25: 77-84, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38111468

RESUMEN

Introduction: Angiogenesis plays an important role in the repair of urethral injury, and stem cells and their secretomes can promote angiogenesis. We obtained pediatric urethral mesenchymal stem-like cells (PU-MSLCs) in an earlier study. This project studied the pro-angiogenic effect of PU-MSLC-derived small extracellular vesicles (PUMSLC-sEVs) and the underlying mechanisms. Materials and methods: PUMSLCs and PUMSLC-sEVs were cultivated and identified. Then, biological methods such as the ethynyl deoxyuridine (EdU) incorporation assay, Cell Counting Kit-8 (CCK-8) assay, scratch wound assay, Transwell assay, and tube formation assay were used to study the effect of PUMSLC-sEVs on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). We explored whether the proangiogenic effect of PUMSLC-sEVs is related to CD73 and whether adenosine (ADO, a CD73 metabolite) promoted angiogenesis. GraphPad Prism 8 software was used for data analysis. Results: We observed that PUMSLC-sEVs significantly promoted the proliferation, migration, and tube-forming abilities of HUVECs. PUMSLC-sEVs delivered CD73 molecules to HUVECs to promote angiogenesis. The angiogenic ability of HUVECs was enhanced after treatment with extracellular ADO produced by CD73, and PUMSLC-sEVs further promoted angiogenesis by activating Adenosine Receptor A2A (A2AR). Conclusions: These observations suggest that PUMSLC-sEVs promote angiogenesis, possibly through activation of the CD73/ADO/A2AR signaling axis.

18.
Adv Mater ; 36(13): e2308484, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38111372

RESUMEN

With increasing energy storage demands across various applications, reliable batteries capable of performing in harsh environments, such as extreme temperatures, are crucial. However, current lithium-ion batteries (LIBs) exhibit limitations in both low and high-temperature performance, restricting their use in critical fields like defense, military, and aerospace. These challenges stem from the narrow operational temperature range and safety concerns of existing electrolyte systems. To enable LIBs to function effectively under extreme temperatures, the optimization and design of novel electrolytes are essential. Given the urgency for LIBs operating in extreme temperatures and the notable progress in this research field, a comprehensive and timely review is imperative. This article presents an overview of challenges associated with extreme temperature applications and strategies used to design electrolytes with enhanced performance. Additionally, the significance of understanding underlying electrolyte behavior mechanisms and the role of different electrolyte components in determining battery performance are emphasized. Last, future research directions and perspectives on electrolyte design for LIBs under extreme temperatures are discussed. Overall, this article offers valuable insights into the development of electrolytes for LIBs capable of reliable operation in extreme conditions.

19.
Nat Commun ; 14(1): 6526, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845239

RESUMEN

Progress towards the integration of technology into living organisms requires power devices that are biocompatible and mechanically flexible. Aqueous zinc ion batteries that use hydrogel biomaterials as electrolytes have emerged as a potential solution that operates within biological constraints; however, most of these batteries feature inferior electrochemical properties. Here, we propose a biocompatible hydrogel electrolyte by utilising hyaluronic acid, which contains ample hydrophilic functional groups. The gel-based electrolyte offers excellent anti-corrosion ability for zinc anodes and regulates zinc nucleation/growth. Also, the gel electrolyte provides high battery performance, including a 99.71% Coulombic efficiency, over 5500 hours of long-term stability, improved cycle life of 250 hours under a high zinc utilization rate of 80%, and high biocompatibility. Importantly, the Zn//LiMn2O4 pouch cell exhibits 82% capacity retention after 1000 cycles at 3 C. This work presents a promising gel chemistry that controls zinc behaviour, offering great potential in biocompatible energy-related applications and beyond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...